Powerplant story...3...2...1....نیروگاهها از سیر تا پیاز

spow

اخراجی موقت
سلام دوستان عزیز
فایل 2 رله های حفاظت
 
آخرین ویرایش:

spow

اخراجی موقت
سلام دوستان عزیز
فایل سوم درزمینه رله های حفاظت
 
آخرین ویرایش:

spow

اخراجی موقت
سلام دوستان عزیز

اینم فایل اخر در زمینه رله های حفاظتی

موفق باشید;)
 
آخرین ویرایش:

pesare irani

کاربر حرفه ای
کاربر ممتاز
:w00:درود بر پسر خاله خودم spow:biggrin:

نمی دونم این رو گذاشتی یا نه اما.................................:surprised:

(میزارم برای مردم ازاری:whistle:)

شماتیك كلی یك نیروگاه هسته ای





 

mir48

عضو جدید
باسلام

باسلام

تشکر میکنم از اطلاعات خوب شما spow جان.
منم میخوام تو این تاپیک مطلب بزارم .
یه مقاله در مورد once through که فکر کنم مفید باشه.
البته یه توضیح بدم که این یه نوع hrsg هستش که درام در اون حذف میشه و در فشارهای بالای 1900 psi کاربرد داره.
 

پیوست ها

  • sdarticle.pdf
    503.1 کیلوبایت · بازدیدها: 0
  • Like
واکنش ها: spow

spow

اخراجی موقت
تشکر میکنم از اطلاعات خوب شما spow جان.
منم میخوام تو این تاپیک مطلب بزارم .
یه مقاله در مورد once through که فکر کنم مفید باشه.
البته یه توضیح بدم که این یه نوع hrsg هستش که درام در اون حذف میشه و در فشارهای بالای 1900 psi کاربرد داره.

ممنون عزیز
تاپیک مال شماهاست منم در خدمتتونم
بویلرها وبازیابهای یکبار گذر برای بالا بردن راندمان وپایین اوردن هزینه ها در دوران اوج مصرف انرژی مطرح شدند وبهترین نمونه نیروگاه رامین اهواز هست
ممنون اطلاعات مفیدی بود
دستت درد نکنه:gol:
 

spow

اخراجی موقت
تحلیل ارتعاشات ازاد پره های توربین گاز به منظور جلوگیری از خستگی دوربالا
امیدوارم به دردتون بخوره!;)
 
آخرین ویرایش:

mir48

عضو جدید
با سلام

با سلام

spow جان اگه میتونی اطلاعاتی در مورد نیروگاه رامین (البته بویلرش) بهم بده.
ممنون میشم.
باتشکر مجدد.
 

spow

اخراجی موقت
بویلر

الف ) دیگهای بخارصنعتی (AIC / I.H.I SD TYPE)
این بویلر بعنوان بویلرهای صنعتی شناخته می شوند و دارای راندمان بالا و كیفیت بسیار مطلوب و سرعت پاسخ مناسب می باشند.
این نوع بویلرها خود اتكاء (Botton Support)، دارای دو درام جداگانه ازنوع چرخش طبیعی می باشند و قابلیت تولید بخار با ظرفیت حداكثر450 تن در ساعت می باشند.
مشعلهای این نوع بویلر در دیواره جلو بوده و به لحاظ آرایش سطوح حرارتی به گونه‌ای است كه جریان دود بر روی سطوح بطور یكنواخت توزیع گردیده است.
كیفیت بالای حاصله از استانداردهای مطلوب و ساختارها و كارآیی بالای آنها باعث استقبال مشتریان از این نوع بویلر می باشند.

ظرفیت و شرایط طراحی
تناژ بخار تولیدی : حداكثر 450 تن در ساعت
حداكثر فشار كاری :kg/cm2g127
حداكثردمای بخار:C 515
سیستم تامین هوای احتراق : فن دمنده اجباری(Force Draft Fan)
سوخت :گازی، مایع (تك ویا دو سوخته )



ب) دیگهای بخار یكپارچه (AIC / I.H.I SC TYPE)
از جمله مزایا و مشخصات دیگهای صنعتی عبارتست از :
بالا بودن سرعت پاسخ زمانی این بویلر به تغییرات بار
بالا بودن قابلیت اطمینان
این دیگها را می توان بطور یكپارچه در كارخانه تولید و پس از آن به سایت حمل نمود.
شایان ذكر است در مواردی كه محدودیتهای حمل بار جاده ای وجودداشته باشد می توان این نوع دیگهای بخاررا در قطعه بندیهای كوچكتر حمل نموده و عملیات نصب و برپایی را در سایت بانجام رساند. بخار تولیدی توسط این مدل دیگ می تواند فوق داغ ویا اشباع باشد و به نظر و درخواست مشتری بستگی دارد. این نوع دیگ بخار خود اتكاء (Botton Support)، دارای دو درام مجزای آب و بخار و سیستم گردشی طبیعی آب و بخار می باشد. همچنین با نوجه به آزمایشات و تجربیات فراوانی كه در طراحی و ساخت این نوع دیگ وجوددارد امكان طراحی و ساخت پیشرفته آنها فراهم آمده است.

ظرفیت و شرایط طراحی
تناژ بخار تولیدی : تا 250 تن در ساعت
حداكثر فشار بخار : kg/cm2g120
حداكثر دمای بخار : C480
سیستم تامین هوای احتراق : فن دمنده اجباری (Force Draft Fan)
سوخت : مایع گازی (تك یا دو سوخته )




ج) دیگهای بخار صنعتی - نیروگاهی(SN )
این بویلر هم مصرف صنعتی و هم نیروگاهی دارد و دارای راندمان بالا و حداقل افت حرارتی می باشد. با فشار و درجه حرارت بالا كاركرده و در ظرفیت های متوسط در صنایع بكارگرفته می شود و این نوع بویلر فقط از بالا به سازه فلزی خود متصل است (Top Support) و دارای یك درام بدون ری هیتر بوده و از نوع تشعشی و دارای سیستم چرخش آب طبیعی است.

ظرفیت و شرایط طراحی
تناژ بخار تولیدی : حداكثر T/H 680
حداكثر فشار بخار : kg/cm2g150
حداكثر دمای بخار : C549
سیستم تامین هوای احتراق : فن دمنده اجباری (Force Draft Fan)
سوخت :گاز، مایع (تك ویا دو سوخته )


د) دیگهای بخار نیروگاهی نوع SR
این نوع دیگ برای تولید بخار در نیروگاههای حرارتی كاربرد دارد . این دیگها با سیستم چرخش طبیعی ، بطور تك درام و دارای چندین مرحله گرمكن بخار(SUPER HEATER) بازگرمكن بخار(REHEATER) و اكونومایزر می باشند.

ظرفیت و شرایط طراحی
ظرفیت : t/h 390 تا حدود t/h 2000
ماكزیمم فشار : تا حدود kg/cmg 180
دمای بخار : تاحدود C 550
سوخت : گاز طبیعی، مازوت

 

spow

اخراجی موقت

انواع دیگ های بخار و طبقه بندی آنها


انواع دیگ های بخار و طبقه بندی آنها
دیگ بخار به مخزن تحت فشار بسته ای اطلاق می شود که در داخل آن سیالی برای استفاده در خارج از آن گرما می بیند. این گرما توسط احتراق سوخت (جامد، مایع، گاز) یا توسط انرژی هسته ای یا برق تولید می شود.

دیگ بخار پرفشار به دیگی اطلاق می شود که بخار آب را در فشاری بالاتر از 15psig تولید نماید. در پایین تر از فشار مذکور دیگ در گروه دیگ بخار کم فشار قرار می گیرد. دیگ های کوچک پرفشار در گروه دیگ های کوچک قرار می گیرند.

مطابق بخش یک آیین نامه دیگ و مخازن تحت فشار مربوط به انجمن آمریکایی مهندسین مکانیک یا به طور اختصار ASME دیگ پرفشار کوچک به دیگ پرفشاری اطلاق می شود که از محدوده های زیر تجاوز ننماید:
قظر داخلی پوسته 16in , حجم کلی بدون روکش و عایقکاری 5Ft3 , و فشار 100psig .

چنانچه دیگ از هریک از محدوه های مذکور تجاوز نماید، به آن دیگ نیرو می گویند. مقرارت مربوط به جوشکاری در اینگونه دیگ های کوچک به سختی دیگ های بزرگ نیست.
دیگ نیرو یک دیگ بخار آب یا بخار می باشد که در بالاتر از فشار 15psig کارکرده و ابعادش از ابعاد دیگ کوچک تجاوز نماید. این تعریف شامل دیگ های آب گرم گرمایشی یا آب گرم مصرفی که در فشار بالاتر از 160psig و دمای 2500F کار کند، اطلاق می شود.

دیگ آب گرم گرمایشی عبارتست از دیگی که در آن هیچگونه بخار آبی تولید نمی شود، لیکن آبگرم آن به منظور گرمایش در یک مدار به گردش درآمده و مجددا به دیگ باز می گردد. فشار آب در اینگونه دیگ ها را در نقطه خروجی آن نباید از 160psig و دمای آن از 2500F تجاوز نماید. اینگونه دیگ ها را دیگ گرمایشی کم فشار می نامند، که مطابق بخش 5 آیین نامه دیگ های گرمایشی از آیین نامه ASME ساخته می شوند. چنانچه فشار یا دما، از این حدود ***** نماید، دیگ باید به مانند دیگ های پرفشار و طبق آیین نامه ASME طرح شود.
دیگ آبگرم مصرفی به دیگی گفته می شود که بطور کامل پر از آب بوده، و برای استفاده خارجی، آبگرم تولید می نماید. (آبگرم دیگر به دیگ باز نمی گردد) فشار آن از 160psig و دمای آن از 2500F تجاوز نمی کند. این نوع دیگ ها را نیز در زمره دیگ کم فشار قرار می دهند و آنها را مطابق بخش چهار (دیگ های گرمایشی) آیین نامه ASME می سازند. چنانچه فشار یا دما از این حد تجاوز نماید این دیگ ها باید مطابق دیگ های پرفشار طراحی شوند.

دیگ استفاده کننده ضایعات حرارتی از ضایعات حرارتی که محصول فرعی پاره ای از فرآیند های صنعتی است، از قبیل گازهای داغ ناشی از کوره بلند کارخانه ذوب آهن یا محصولات ناشی از احتراق خروجی از یک توربین گازی، یا محصولات فرعی یک فرآیند صنعتی، استفاده می کند. ضایعات حرارتی از روی سطوح تبادل کننده گرما عبور نموده و آبگرم یا بخار آب تولید می شود.

برای ساخت این نوع دیگ ها، همان مقررات ساخت آیین نامه ASME استفاده شده برای دیگ های آتش شده بکار بده می شوند. قطعات کمکی و ایمنی مربوط به این دیگ ها بطور معمول مطابق آیین قطعات در دیگ های دیگر می باشند.
دیگ یکپارچه به دیگی اطلاق می شود که بطور کامل در کارخانه ساخته و سوار شده باشد. این دیگ دارای انواع لوله آبی و لوله دودی یا چدنی بوده و دستگاه های احتراق، تجهیزات کنترل و ایمنی را نیز به همراه خود دارد. دیگی که در کارخانه ساخته شده و سوار می شود نسبت به دیگ مشابه ای که دارای همان ظرفیت بخاردهی بوده و در خارج از کارخانه و در محل بهره برداری، نصب و سوار می شود، ارزانتر است. گرچه دیگ ساخته و سوار شده در کارخانه به طور معمول حاضر و آماده تحویل نمی باشد، ولی نسبت به دیگی که در محل بهره برداری ساخته و سوار می شود دارای زمان ساخت و تحویل کمتری است. زمان نصب و راه اندازی آن نیز نسبتا کمتر است. در کل می توان گفت که کار در کارگاه بطور معمول بهتر و قابل رسیدگی بوده و هزینه کمتری دارد.

دیگ فوق بحرانی به دیگی اطلاق می شود که در فشاری بالاتر از فشار بحرانی یعنی 3206.2psig و دمای اشباع 705.40F کار کند. بخار آب و خود آب دارای فشار بحرانی 3206.2psig می باشند. در این فشار، بخار آب، دارای جرم ویژه یکسانی هستند و به معنای این است که بخار، تا حد آب فشرده شده است. هنگامی که این مخلوط در بالاتر از دمای اشباع 705.40F دما ببیند، بخار خشک فوق داغ تولید شده که برای کار در فشارهای بالا مناسب است. این بخار خشک به ویژه برای به حرکت درآوردن مولدهای توربینی مناسب است.
دیگ فوق بحرانی به دو نوع یکسره و باز چرخشی تقسیم می شوند. هر دو نوع در محدوده فوق بحرانی یهنی بالاتر از 3206.2psig و 705.4F کار می کنند. در این محدوده خواص مایع و بخار اشباع یکسان است. هیچگونه تغییری در فاز مایع-بخار صورت نمی گیرد و از اینرو چیزی بنام سطح آب وجود نداشته و به استوانه بخار (steam drum) احتیاجی نیست.
دیگ ها را همچنین می توان طبق طبیعت مواد استفاده آنها گروه بندی کرد. گروه بندی رایج عبارت است از: دیگ ساکن، قابل حمل، لکوموتیوی (ساخت این گونه دیگ ها امروزه متداول نیست) و دریایی که به صورت زیر تعریف می شوند:
دیگ ساکن به دیگی اطلاق می شود که بطور همیشگی بر روی زمین نصب شده است.

دیگ قابل حمل به دیگی اصلاق می شود که بر روی کامیون، کشتی کوچک رودخانه ای و یا هر نوع وسیله نقلیه نصب می شود.

دیگ لکوموتیوی دیگی است که بریا کشیدن وسیله نقلیه بروی ریل راه آهن طرح می شود.

دیگ دریایی به دیگی گفته می شود که بطو معمول ارتفاع آن کم بوده و برای کشتی های مسافربری و باری اقیانوس پیما طرح می شوند. سرعت بخار دهی این نوع دیگ ها زیاد است.
نوع ساختمان دیگ ها را نیز می توان به ترتیبن زیر گروه بندی کرد:

دیگ چدنی، واحدهای گرمایش کم فشاری هستند که قطعات فشاری آن توسط ریختگری از چدن، برنز، یا برنج ساخته می شوند. این دیگ ها را بیشتر بر اساس شیوه ای که محفظه های ریختگری شده آن برهم سوار می شود گروه بندی می کنند. این محفظه ها توسط پستانک های فشاری، سوله های خارجی و پستانک پیچی به همدیگر محکم می شوند. سه نمونه از دیگ های چدنی عبارتند از:

1- دیگ های پره ای عمودی که پره ها بطور عمودی بروی یکدیگر قرار گرفته و توسط پستانک های فشاری یا پیچی به یکدیگر متصل می شوند.

2- دیگ های پره ای افقی که پره ها بطور افقی پهلوی هم قرار می گیرند. در این وضعیت طرز قرارگرفتن پره ها نسبت به هم مانند پشت سرهم قرار گرفتن برش هایی از یک قالب نان مکعب مستطیلی است.

3- دیگ های چدنی کوچک که با ریختگری بصورت یکپارچه ساخته می شوند. این دیگ ها در گذشته جهت تهیه آب گرم بکار می رفتند.

دیگ های فولادی می توانند از نوع پرفشار یا کم فشار باشند و امروزه بطور معمول از ساختمان جوشی برخوردار هستند. این دیگ ها به گروه های زیر تقسیم می شوند:

1- دیگ لوله دودی که در آنها محصولات احتراق از داخل لوله ها عبور می کنند در حالیکه آب پیرامون لوله ها را دربر می گیرد.

2- دیگ لوله آبی که در آنها آبل از داخل لوله ها و محثولات احتراق از اطراف آنها عبور خواهد کرد.

دیگ های لوله دودی بطور معمول تا ظرفیت 70000lb/hr و تا فشار 300psig ساخته می شوند. در شرایط بالاتر از این حدود، دیگ های لوله آبی مورد استفاده قرار می گیرند. دیگ های لوله دودی به دیگ های پوسته ای نیز معروفند. در اینجا، آب و بخار آب درون پوسته محبوس می باشند.
این نوع دیگ حجم بخاری را که دیگ می تواند تولید نماید محدود می کند. در رابطه با فشار پوسته های بزرگ، ضخامت بسیار زیادی را احتیاج خواهد داشت و این موضوع ساخت آنها را گران می نماید.
 

spow

اخراجی موقت
تاریخچه و انواع دیگ های بخار

همزمان با ورود بشر دوران صنعتی که با استفاده گسترده تر انسان از نیروی ماشین در اوایل قرن هجدهم میلادی آغاز شد.
تلاشهای افرادی نظیر وات ،مارکیز …، از انگلستان در ارتباط با گسترش بهره برداری از نیروی بخار و طراحی و ساخت دیگ های بخار شروع شد.
دیگ های بخار اولیه از ظروف سر بسته و از ورق های آهن که بر روی هم بر گرداننده و پرچ شده بودند و شامل اشکال مختلف کروی و یا مکعب بودند ساخته شدند.
این ظروف بر روی دیوارهای آجر بر روی آتش قرار داده شده و در حقیقت برون سوز محسوب می شدند.

این دیگ ها در مراحل آغاز بهره برداری تا فشار حدود 1bar تامین می نمودند که پاسخگوی نیازهای آن دوره بود ولی به علت تشکیل رسوب و لجن در کف دیگ که تنها قسمت تبادل حرارت آب با شعله بود، و با بروز این مشکل، دمای فلز به آرامی بلا رفته و موجب تغییر شکل و دفرمه شدن فلز کف و در نتیجه ایجاد خطر انفجار می شد.
همزمان با نیاز به فشار های بالاتر بخار توسط صنایع، روند ساخت دیگ های بخار نیز تحولات بیشتری را تجربه نمود.
بدین جهت برای دستیابی به بازده حرارتی بشتر، نیاز به تبادل حرارتی بیشتری احساس می شد، در نتیجه سطوح در معرض حرارت با در نظر گرفتن تعداد زیادی لوله باریک که در آن ها گازهای گرم، جریان داشتند و اطراف آنها آب وجود دارد، افزایش یافتند. این دیگ ها با داشتن حجم کمتر راندمان مناسبی داشتند.
دیگ های بخار لوله دودی امروزی با دو یا سه پاس در حقیقت انواع تکامل یافته دیگ های مذبور می باشد.

تحول عمده دیگر در ساخت این نوع دیگ ها، تکامل از دیگ های فایرتیوپ سه پاس (عقب خشک) به ساخت دیگ های ویت یک (عقب تر) می باشد.
در دیگ های عقب خشک انتهای لوله های پاس 2 و 3 هر دو به یک سطح شبکه متصل می شوند، که به علت اختلاف دمای فاحش گازهای حاصل احتراق در پاس 2 ( 1000 درجه سانتیگراد ) و پاس 3 ( حداکثر 250 سانتیگراد ) سطح این شبکیه دچار تنش و در نهایت نشتی می شود. همچنین دیگ های عقب خشک نیاز به عایق کاری و انجام تعمیرات بر روی مواد نسوز طاقچه جدا کننده پاس 2 و 3 نیز در فواصل زمانی کوتاه دارند، که موجب افزایش هزینه نگهداری و ایجاد وقفه در تولید می شوند.

جهت حل مشکلات فوق شرکت ینکلن در سال 1935 طرح جدید ساخت دیگ های بخار 3 پاسه را به ثبت رساند، که مشکل اختلاف دمای زیاد صفحه و لوله ها را که تحت اختلاف شدید دمای زیاد قرار داشتند را از طریق ایجاد دو صفحه شبکیه جداگانه برای هر دو دسته از لوله ها بر طرف ساختند. این طرح سطوح عایق کاری شده در دیگ های عقب خشک را نیز تبدیل به سطوح مفید و جاذب حرارت نمود.
مزایای طرح لینکلن که منجر به ساخت دیگ های بخار عقب تر (WET_back) گردید، موجب شده این ساختار جدید تا امروز همه جا رواج پیدا نماید.
ظرفیت این دیگ ها حداکثر تا 4.3mw می باشد.

جهت دستیابی به ظرفیت های بالاتر، نوع دیگری از دیگ های بخار با ساختاری متفاوت بنام دیگ های لوله آبی (واتر تیوپ) ساخته شده و تکامل یافته اند. امروزه تعداد زیادی از دیگ های بخار لوله آبی با مشخصاتی نظیر فشار نامحدود و ظرفیت ها ی بالا، با راندمان 90-85 درصد جهت تولید نیرو در کارخانجات بزرگ و نیرو گاه ها و ... نصب و مشغول به کارند.
 

spow

اخراجی موقت

مبانی گرما و انرژی در مولدهای بخار


مقدمه امروزه، بیش از هر دوران در گذشته گرما ( انرژی ) کلید تمدن جدید است و منابع شناخته شده انرژی روز به روز تحلیل می روند بنابراین بدیهی است مهندسی که با تجهیزات استخراج گرما و تبدیل آن به انرژی سرو کار دارد باید درباره گرما اطلاعات کافی داشته باشد.
گرما

شکلی از انرژی که از جنبش مولکولی ناشی می شود. فرض می شود مولکولهای هر ماده بطور پیوسته در جنبش اند و شدد گرما ( یا دما ) به سرعت لرزش مولکولی بستگی مستقیم دارد در صورتیکه آهنگ لرزش جسمی افزایش یابد دمای افزایش و در صورتیکه آهنگ لرزش کاهش یابد دما نیز کاهش می یابد.

برای درک کامل این موضوع در نظر داشته باشید که فقط در صفر مطلق 459.8 – درجه فارنهایت هیچ گونه جنبش مولکولی و بنابراین هیچ گرمایی وجود ندارد و این بدین معنی است که مولکولهای هر جسم بالای صفر مطلق حرکت ثابتی دارند .


گرم کردن اجسام :



گرم کردن جسم سبب

1- بالا رفتن دما،

2- تغییر حالت ، به طور مثال از جامد به مایع یا مایع به گاز

3- انجام کار بیرونی به وسیله انبساط جسم جامد، مایع یا گاز می شود.

اگر به یخ گرما داده شود تا به آب تبدیل شود و بنابراین بدون افزایش دما تغییر حالت دهد تمام این آثار دیده می شود حال چنانچه گرما دادن ادامه یابد تا آب به نقطه جوش برسد دمای آن افزایش می یابد بدون آنکه تغییر حالت دهد سرانجام اگر باز هم گرما داده شود آب بخار می شود که تغییر حالتی دیگر است اما دمای آن افزایش نمی یابد .

با تولید بخار فشاری نیز به دیواره مخزن که بخار در آن محفوظ است اعمال می شود اگر این مخزن سیلندری حاوی پیستون متحرک باشد بخار می تواند پیستون را حرکت داده کار خارجی انجام دهد.



انتقال گرما :



بهتر است که گرما را مانند سیالی در نظر بگیریم که از جسمی به جسم دیگر جریان پیدا می کند ولی به بیان دقیق هیچ ماده فیزیکی منتقل نمی شود مولکولهای ماده گرمتر نسبت به ماده سردتر با آهنگ بالاتری حرکت می کنند بنابراین زمانی که دو جسم با دمای مختلف با هم تماس پیدا کند جنبش مولکولی در جسم سردتر افزایش و در جسم گرمتر کاهش می یابد تا تعادل برقرار شود گرما معمولا از جسم گرمتر به جسم سردتر انتقال می یابد مگر اینکه به کمک عاملی بیرونی ( مثلا در سرد کننده ها ) جهت انتقال گرما به طور مصنوعی برعکس انجام شود.



دما :

معیاری از شدت گرما یا درجه گرمی یا سردی با مقدار گرما یا سرما تفاوت دارد ممکن است جسمی کوچک و جسمی بزرگ دقیقا دمای یکسان داشته باشد ولی بدیهی است که جسم بزرگ مقدار گرمای بسیار بیشتری از جسم کوچک دارد.


ب- اندازه گيری دما
اهمیت اندازه گیری دما :

به دلیل کنترل کیفیت ، زیرا دمای بخار ( درجه ******** هیت ) عملیات گرمایی فلزات ، استریل کردن ، پاستوریزه کردن شیر، پالایش نفت ، و کار ایمن ماشین آلات در هر صنعتی که شامل فرایندهای گرمایش و سرمایش باشد به طور گسترده ای به اندازه گیری دما بستگی دارد.



یکاهای دما :
در مقیاس دمای فارنهایت اختلاف دما بین نقطه انجماد و تبخیر آب به 180 قسمت یا درجه تقسیم می شود رقم 32 درجه فارنهایت را نقطه انجماد و 212 درجه فارنهایت را نقطه تبخیر در نظر می گیرند .

در مقیاس دمای سانتیگراد اختلاف دما بین یخ و بخار آب به 100 قسمت یا درجه تقسیم می شود صفر درجه سانتیگراد نقطه انجماد نسبی و 100 درجه سانتیگراد نقطه تبخیر آب است .

مقیاس دمای کلوین مقیاس دمای مطلق است پائین ترین دمای نظری یا صفر مطلق صفر درجه کلوین وضعیتی است که در آن دما مولکولها از جنبش باز می ایستند و هیچ گرمایی وجود ندارد.

در مقیاس فارنهایت این نقطه 459.8 درجه کلوین زیر صفر و در مقیاس سانتیگراد 273 درجه سانیگراد زیر صفر نقطه انجماد آب 273 درجه کلوین یا صفر درجه سانتیگراد و نقطه جوش آن 373 درجه کلوین یا 100 درجه سانتیگراد است.

منظور از دمای مطلق :

حجم گاز کامل تحت فشار ثابت به ازای هر درجه سانتیگراد کاهش دما ، به اندازه 273/1 حجم آن در صفر درجه سانتیگراد کاهش می یابد از مطلب معلوم میشود که در 273 درجه سانتیگراد زیر صفر در مقیاس سانتیگراد حجم گاز به صفر می رسد و جنبش مولکولی که سبب ایجاد گرما می شود کاملا متوقف می شود این دمای بسیار پائین صفر مطلق نامیده می شود و پائین ترین دمایی است که می توان به آن دست یافت.

محاسبات دمای مطلق از صفر درجه مطلق صورت می گیرد برای تبدیل درجه فارنهایت به درجه مطلق عدد 460 و در تبدیل درجه سانتیگراد به درجه مطلق عدد 273 اضافه می شود.



یکاهای اندازه گیری دما :



دما بر حسب درجه اندازه گیری می شود دماسنجها گستره دماهای معمولی تا 1000 درجه فارنهایت را اندازه گیری می کنند برای اندازه گیری دماهای بسیار بالا و بیرون از گستره کار دماسنجها از آذرسنج ( پیرومتر ) استفاده می شود.



ساختمان دماسنج:



دماسنج لوله ای است شیشه ای که سوراخ بسیار باریکی در وسط دارد یک سر آن به شکل حباب است و سر دیگر بسته شده حباب و قسمتی از لوله با مایع که معمولا جیوه یا الکل در آن است پر می شود هوای باقی مانده لوله را تخلیه می کنند بجز در دماسنجهای مورد استفاد ه در دماهای بسیار بالا که فضای باقی مانده با گاز مخصوصی پر می کنند گستره های تقریبی کار دماسنجهای شیشه ای متداول عبارت اند از:

جیوه ای از (750 تا 38- ) درجه فارنهایت

جیوه و نیتروژن از ( 1000 تا 38- ) درجه فارنهایت

الکل از ( 150 تا 95- ) درجه فارنهایت

وقتی جیوه یا الکل در معرض هوا یا مایعی گرمتر از خود قرار گیرند منبسط می شوند و در لوله بالا می روند انبساطی جزئی سبب حرکت قابل توجه رو به بالا می شود مقیاس درجه ای که روی شیشه دماسنج جیوه ای چاپ شده دما را نشان می دهد.

1-دما سنج را در فشار مطلق 14.7 psi درون یخ ذوب شده قوطه ور و سر ستون جیوه را نشان گزاری می کنند این نقطه به نام صفر درجه سانتیگراد نقطه انجماد آب می باشد .

2-دماسنج را در آب جوش در فشار مطلق 14.7 psi قوطه ور و سر ستون جیوه را نشان گزاری می کنند این نقطه به نام صد درجه سانتیگراد نقطه جوش آب است .

3-فاصله بین نقاط انجماد و جوش را بر حسب مقیاس سلسیوس یا فارنهایت به ترتیب به 100 قسمت یا 180 قسمت مساوی تقسیم می کنند .

دما سنج سلسیوس مقیاس منطقی تری نسبت فارنهایت دارد و معمولا در محاسبات علمی از مقیاس سلسیوس استفاده می شود ولی فارنهایت در بین مهندسان و افراد دیگری برای مقاصد روزانه به طور وسیع تری مورد استفاده قرار می گیرد .

اندازه گیری دماهای بسیار بالا :





آذرسنجها می توانند دماهایی بالاتر از گستره کار دماسنجها را اندازه گیری کنند انواع آنها متعدد است ولی آذرسنجهای الکتریکی از همه متداولترند ترموکوبل و آذرسنجهای نوری از این جمله اند .

در ترموکوبل دو میله فلزی غیر هم جنس در یک لوله چینی متصل و درز بندی شده اند سیمها به این میله ها و به یک گالوانومتر وصل می شوند لوله حاوی میله ها در نقطه ای قرار می دهیم که هدف اندازه گیری دمای آن می باشند به افزایش دمای میله ها ولتاژی الکتریکی در محل اتصال القا می شود که با اختلاف دما بین اتصال گرم و اتصال سرد متناسب است جریان حاصل در مدار جاری می شود و عقربه گالوانومتر را حرکت می دهد صفحه مدرج گالوانومتر بر مبنای دما درجه بندی می شود .

آذرسنج نوری شامل تلسکوپی با یک فیلامان ( رشته ) کوچک است که وقتی جریان الکتریکی از آن می گذرد گرم و سرخ می شود در مدار فیلامان یک باطری و یک گالوانومتر قرار دارد که به وسیله مقاومت متغییری که در تلسکوپ نصب شده جریان گذرا از فیلامان را تغییر می دهیم تا به هنگا م تمرکز یافتن تلسکوپ روی شعله یا دیواره کوره ، فیلامان کاملا از نظر محو شود. در این نقطه دما روی صفحه مدرج خوانده می شود .

بر خلاف ترموکوبل هیچ قسمتی از آذرسنج نوری در معرض گرمای مستقیم کوره نیست و می توان در فاصله ای مناسب از شعله دما را اندازه گیری کرد کار این وسیله به این حقیقت بستگی دارد که رنگ و دما با هم رابطه ای یکسان دارند .
آذرسنج نوری الکتریکی دارای یک باطری است ولی ترموکوبل باطری لازم ندارد.


مقدار گرما :



مقدار گرما با واحد گرمایی بریتانیا ( Btu ) سنجیده می شود . یک Btu 180/1 گرمای لازم برای افزایش دمای یک پوند آب از 32 تا 212 درجه فارنهایت یا مقدار گرمای لازم برای افزایش دمای یک پوند آب به اندازه یک درجه فارنهایت است.
 

spow

اخراجی موقت
ج- گرمای ويژه : گرمای ویژه :

مقدار گرمای لازم به Btu برای افزایش دمای یک پوند از ماده مورد نظر به اندازه یک درجه فارنهایت است .گرمای ویژه بعضی از مواد متداول



ماده Btu/ib °f)( گرمای ویژه



آب 1

یخ 0.49

چدن 0.13

مس 0.093


انتقال گرما:



انتقال گرما به سه طریق است:


تشعشعی ، هدایت ، جابه جایی


تشعشعی :



در این روش انتقال گرما از جسم گرم به وسیله امواج اثیری با ماهیتی مشابه امواج نوری است گرمای تابشی همچنان از هوا می گذرد آن را گرم نمی کند ولی اجسام جامد که مانع تابش اند آن را جذب یا منحرف می کنند در کوره دیگ و کلیه قسمتهایی که در معرض آتش اند تابش مستقیم گرما داریم .



هدایت :



تماس مولکولهای یک جسم با یکدیگر سبب عبور گرما از میان جسم می شود برای مثال اگر یک سر میله ای آهنی در معرض آتش قرار بگیرد در زمان کوتاهی سر دیگر آن که در دست ماست به سبب هدایت گرما از سر میله که گرم و سرخ شده است ، داغ می شود و دیگر نمی توان آن را در دست نگه داشت در این حالت گرما از طریق یک رشته برخورد منتقل می شود مولکولهای گرم و تند رو به مولکولهای سرد و کند رو برخورد کرده آنها را سرعت می بخشد بدین طریق گرما از دیواره های لوله و شبکه های دیگر عبور کرده به آب انتقال می یابد.

همانطور که میدانید اجسام دارای الکترونهای آزاد در خود می باشند که می توانند حامل انرژی گرمایی و همینطور انرژی ا لکتریکی در خود باشند . که متناسب با نوع ماده ( ضریب انتقال حرارت هدایتی K ) کم( در اجسام عایق) و زیاد (در اجسام رسانا) می باشد.



جابه جایی:



انتقال گرما به وسیله جریان یافتن را جابه جایی می نامند.

همچنان که گاز یا مایعاتی که درون ظرفی قرار دارند با گرم شدن انبساط می یابند و تمایل به بالا رفتن دارند لایه های سردتر گاز یا مایع که در بالا هستند به علت سنگینی نسبت به گاز یا مایع گرم به سمت پائین جریان می یابند و جای لایه های گرم شده را می گیرند بدین ترتیب جریانهای همرفتی برقرار می شوند. و کل گاز یا مایع به تدریج گرم شده دمای آن یک نواخت می شود بدین شیوه است که رادیاتور بخار ، هوای اتاق را با دمای یکسان گرم نگه می دارد آب درون دیگ بخار نیز به کمک جریانهای همرفتی ناشی از جریان رو به بالای آب گرم سبک و در تماس سطح داغ و جریان رو به پائین آب سرد سنگین که در بالا قرار دارد گرم می شود.


شدت انتقال حرارت


رسانندگی گرمایی به آهنگ عبور گرما از میان جسم اشاره می کند این آهنگ برای مواد مختلف فرق می کند و ممکن است به صورت مقدار گرما به Btu بر ساعت مشخص شود که در قطعه ای به مساحت یک فوت مربع و ضخامت یک اینچ سبب اختلاف دمای دو سطح مقابل جسم به اندازه یک درجه فارنهایت می شود. رسانندگی گرمایی با دما چگالی و مقدار رطوبت تغییر می کند به همین دلیل جدول رسانندگی گرمایی اجسام تنها مقادیر تقریبی را به ما می دهد معمولا رسانندگی در فلزات با افزایش دما کاهش می یابد ولی در اغلب مواد دیگر رسانندگی با افزایش دما افزایش می یابد .



ضریب انبساط طولی یک جسم جامد:



ضریب انبساط طولی نسبت افزایش طول جسم بر اثر انبساط به طول اولیه جسم است وقتی یک درجه فارنهایت گرما می بیند به بیان دیگر مقدار انبساط واحد طول به ازای افزایش یک درجه است .

انبساط و انقباض مایعات :



بیشتر مایعات در زمان گرم شدن منبسط می شوند و در زما ن سرد شدن منجمد،انبساط مایعات بیشتر از جامدات است و در صورتیکه در محفظه بسته ای محفوظ باشند فشار زیادی ایجاد می کنند مایعات مختلف میزانهای انبساط مختلفی دارند اتر ، الکل و نفتهای سبک مثل بنزین میزان انبساط بسیار بیشتری از آب دارند برای این مایعات انبساط را به صورت حجمی اندازه گیری می کنیم وضریب انبساط حجمی انبساط هر واحد حجم با افزایش یک درجه فارنهایت است .



اینگونه نبود رودخانه ها و دریاچه ها در هوای سرد منجمد می شدند و زندگی تمام گیاهان و حیوانات به خطر می افتاد ترکیدن لوله ها و مخزن های آب به دلیل نیروی انبساطی آب در حین انجماد است .
رفتار گازها:



زمانی که گازها گرما ميبينند حجم يا فشارشان افزايش می يابد و بر عکس در زمان سرد شدن حجم يا فشارشان کاهش می يابد اين تغييرات از دو قانون ساده چارلز و گيلوساک پيروی ميکند .

در زمان استفاده از اين دو قانون در مسائل لازم است که قانون ساده دیگر یعنی قانون بویل ماریوت را که با تغییرات فشار و حجم سرو کار دارد مطالعه کنیم زیرا تغییر دما غالبا با تغییر فشار همراه است .

قانون بویل ماریوت:



قانون بويل ماريوت بيان ميدارد که (چنانچه دمای گازی ثابت باقی بماند ، فشار مطلق گاز نسبت به نحجم به طور معکوس تغییر خواهد کرد ) مطابق این قانون اگر به فشار افزوده شود حجم متناسب با آن کاهش پیدا می کند یا برعکس .

مثلا اگر 10 فوت مکعب گاز تحت فشار 10 psi مطلق باشد و فشار به psi مطلق افزایش دهیم حجم به 5 فوت مکعب کاهش پیدا می کند به طور خلاصه در دمای ثابت با دو برابر کردن یکی، عامل دیگر نصف می شود.

قانون چارلز :



این قانون بیان می کند که ( چنانچه حجم را ثابت نگه داریم فشار مطلق گاز مستقیما با دمای مطلق تغییر خواهد کرد توجه کنید که این قانون تناسب مستقیم است اگر دما 30 درصد بالا رود فشار مطلق نیز 30 درصد افزایش می یابد.

قانون گیلوساک :



قانون فوق بیان می کند که ( چنانچه فشار ثابت باشد ، حجم یک گاز با دمای مطلق به طور مستقیم تغییر خواهد کرد )

تراکم دما ثابت( ایزوترم ) :



انبساط یا تراکم گازی در دمای ثابت است یعنی دما حین انبساط یا تراکم ثابت می ماند این حالت هنگامی پدید می آید که تغییرات بر اساس قانون بویل ماریوت صورت گیرد .

عملا هیچگاه انبساط یا تراکم دما ثابت رخ نمی دهد حتی سیلندر کمپرسوری که با آب سرد می شود ، نمی تواند گرما را به سرعت کافی دفع کند و بنابراین دمای هوا به هنگام تراکم به سرعت افزایش می یابد .
تراکم آدیاباتیک ( بی دررو ) :



به وضعیتی می گویند که دما در حین تراکم افزایش و در حین انبساط کاهش می یابد بدون آنکه گرما از طریق دیواره ها ی سیلندر تلف یا جذب شود شرایط مذکور هرگز عملا به طور دقیق تحقق نمی یابد اگر چه در بعضی موتورهای گاز سوز یا کمپرسورهای هوا حالتی نسبتا نزدیک به این وضعیت اتفاق می افتد.
د- اصطلاحات مربوط به بخار آب
بخار آب :
آب در وضعیت نیمه گاز را بخار آب می گویند اگرچه بخار آب با تغییری در قوانین ساده گازها رفتاری مانند گازهای ایده آل دارد اما بخار است نه گاز یعنی ماده ای بین حالتهای مایع خالص و گاز .




چگونگی تولید بخار از آب به درون دیگ بخار :



گرمای کوره از فلز شبکه و لوله ها به آب رسانده می شود و آب مستقیما از فلز گرما می گیرد آب پس از گرم شدن به سمت بالا می رود و آب سرد به علت سنگینی به سمت پائین حرکت می کند با جریانهای همرفتی که بدین ترتیب برقرار می شوند همه آبها به تدریح تا رسیدن به نقطه جوش گرم می شوند حال با ادامه گرما دادن آب به بخار تغییر فاز می دهد در فرایند فوق هیچ تغییر وزنی وجود ندارد یک پوند آب به یک پوند بخار تبدیل می شود.
نقطه جوش آب :



نقطه جوش آب در سطح دریا در فشار یک اتمسفر 212 درجه فارنهایت است با کاهش فشار نقطه جوش کاهش و با افزایش فشار نقطه جوش افزایش می یابد.
گرمای محسوس :



گرمای لازم برای افزایش دمای آب از 32 درجه فارنهایت به نقطه جوش است افزایش دما را می توان با دماسنج اندازه گیری کرد از این رو اصطلاح گرمای محسوس متداول شده است

گرمای نهان تبخیر :



مقدار گرمای لازم برای تبدیل آب در نقطه جوش به بخار با همان دما و فشار است کلمه نهان به معنی پنهان است و چون در تغییر حالت از مایع به بخار هیچ نشانی یا اثری از افزایش گرما دیده نمی شود در اینجا بکار برده می شود.
گرمای کل بخار :



مجموع گرمای محسوس و نهان آن است . در جدیدترین جدولهای بخار در تعریف فوق به جای گرما از واژه انتالپی استفاده می شود بنابراین گرمای محسوس انتالپی مایع گرمای نهان ، انتالپی تبخیر و گرمای کل ، انتالپی بخار می شود .

آب یا بخار در نقطه جوش را اشباع می گویند .

بخار اشباع :



بخار ی است که از آب تولید می شود و به زحمت می توان آن را بخار نامید هر گونه اتلاف گرما بدون افت فشار فورا بخار اشباع را تقطیر و به آب تبدیل می کند .
بخار اشباع خشک :



اگر بخار اشباع ، همان گونه که از آب تولید می شود هیچ گونه رطوبتی به صورت معلق در آن نداشته باشد ( یعنی قطرات کوچک آب به صورت مایع که در مه یافت می شود ، در آن نباشد ) بخار را خشک می گویند. حال چنانچه دارای رطوبت باشد آن را بخار تر می نامند .

بخار خشک کاملا غیر روئیت است ظاهر سفید و مه مانند بخاری که در هوا تخلیه می شود ناشی از وجود ذرات آب مایع است که بصورت معلق در بخار وجود دارند .
کیفیت بخار ( عیار ) :



کیفیت بخار مستقیما به مقدار آب یا رطوبت بخار نشده موجود در بخار اشاره می کند اگر بخار کاملا خشک باشد کیفیت آن صد در صد ولی اگر دارای 2 در صد رطوبت باشد کیفیت آن 98 در صد خواهد بود .
تعیین عیار بخار :



بوسیله دستگاهی بنام کالری متر صورت می گیرد این دستگاه در سه نوع وجود دارد کالری متر بارل نوع ابتدائی و دقت چندانی ندارد

کالری متر اختناقی تا 7 درصد در فشار 400 psig تعیین می کند .

کالری متر مجزا وسعت اندازه گیری بیشتری دارد و دقیق تر از دو نوع قبل می باشد.
 
  • Like
واکنش ها: Avon

Nika-eng

عضو جدید
برای شروع هم بد ندیدم از توربین بخار شروع کنیم
فایلی که به دستتون میرسه حاوی اطلاعات مفیدی در زمینه توربین بخار واجزای سازنده اونه
امید که مفید به فایده باشه
منتظر نظرات پیشنهادات راهنماییها و فایلهای شما دوستان عزیز هستم
موفق باشید ;)
http://rapidshare.com/files/248719327/Steam_Turbine.zip.html
اين لينك خرابه ميشه براي من ميل كنيد
kazemian.ameneh@gmail.com
 

spow

اخراجی موقت
موتورهای استرلینگ

مقدمه :
موتور استرلینگ موتورهای گرما- کاری هستند که حرارت را تبدیل به جنبش می کنند و نسبت به موتور بنزینی و دیزلی کارآیی بیشتری دارند. امروزه چنین موتورهایی برای موردهای خاص استفاده می کنند مثل زیر دریایی یا قایق خصوصی. گازهایی که درون موتور استرلینگ استفاده می شود هرگز از موتور خارج نمی شوند. در چنین موتورهایی هیچ احتراقی صورت نمی پذیرد، هیچ اگزوزی وجود ندارد و هیچ صدای انفجاری شنیده نمی شود به همین دلیل چنین موتورهایی فاقد صدا هستند. این موتورها از منبع گرمایی خارجی مثل آتش استفاده می کنند. گرما به گاز درون سیلندر گرم شده اضافه می شود. همین امر سبب ایجاد فشار می گردد و پیستون را به سمت پائین می برد. زمانیکه پیستون راست پائین میرود پسیتون چپ به سمت بالا برده می شود. سپس گاز گرم را به سیلندر خنک شده وارد می نماید که خیلی سریع گاز را خنک می سازد و فشار آنرا پائین می آورد. پیستون سیلندر خنک شده گاز را، فشرده می سازد. گرمای ایجاد شده توسط چنین فشرده سازی توسط منبع خنک سازی خارج می گردد. موتور استرلینگ فقط نیرو را در مدت بخش اولیه چرخش بوجود می آورد. دو روش اساسی جهت افزایش نیروی خارجی چرخه استرلینگ وجود دارد: در مرحله اول، فشار گاز گرم شده بر پیستون فشار وارد می آورد. افزایش فشار در این مرحله نیروی خارجی موتور را افزایش میدهد. یک روش افزایش فشار، افزایش درجه حرارت گاز است.

موتورهای استرلینگ چگونه کار می کنند؟
موتور استرلینگ یک موتورحرارتی است که اختلاف زیادی با موتورهای احتراق داخلی در اتومبیل دارد که در سال 1816 توسط رابرت استرلینگ اختراع شد. موتور استرلینگ قابلیت بازدهی بیشتری نسبت به موتورهای بنزینی و دیزلی دارد.
اما امروزه موتورهای استرلنگ فقط در برخی کاربرد های خاص مانند زیر دریاییها یا ژنراتورهای کمکی در قایق ها که عملکرد بی صدا مهم است استفاده می شود. اگر چه موتورهای استرلینگ به تولید انبوه نرسید اما برخی اختراعات پرقدرت با این موتور کار می کند.
موتورهای استرلنگ از چرخه استرلنگ استفاده می کند که مشابه چرخه های استفاده شده در موتورهای احتراق داخلی نیست.
• گاز استفاده شده در داخل موتورهای استرلنگ هیچ وقت موتور را ترک نمی کند و مانند موتورهای دیزل و بنزینی سوپاپ دود که گازهای پر فشار را تخلیه می کند و محفظه احتراق وجود ندارد .به همین علت موتورهای استرلنگ بسیار بی صدا هستند .
• چرخه استرلینگ از یک منبع حراتی خارجی که می تواند هر چیزی از بنزین و انرژی خورشیدی تا حرارت ناشی از پوسیدگی گیاهان باشد استفاده کند و هیچ احتراقی داخل سیلندرهای موتور رخ نمی دهد .
صدها راه وجود دارد که یک موتورهای استرلنگ ایجاد کنیم .در این مقاله ما درمورد چرخه استرلینگ و چگونگی کار انوع مختلف این موتورمطالبی می آموزیم .

چرخه استرلینگ:
قاعده اصلی کار موتور استرلنگ این است که مقداری گاز داخل موتور محفوظ شده است .چرخه استرلینگ شامل یک سری رویداد است که فشار گاز داخل موتور را تغییر می دهد و سبب ایجاد کار می شود . چند خاصیت مهم گاز وجود دارد که برای عملکرد موتورهای استرلنگ مهم است :
• اگر مقداری گاز محبوس در یک حجم ثابت از فضا داشته باشید و شما به آن گاز حرارت بدهید , فشار گاز افزایش خواهد یافت .
• اگر مقداری گاز محبوس داشته باشید و آن را فشرده کنید (حجم آن را در فضا کاهش دهید ) ، دمای آن گاز افزایش خواهد یافت .
اجازه دهید به هر کدام از مراحل سیکل استرلینگ ، هنگامی که به موتور ساده شده استرلینگ نگاه می کنیم برویم .
موتور ساده شده ما از دو سیلندر استفاده می کند. یک سیلندر به وسیله ی یک منبع خارجی گرما، گرم می شود (مثل آتش) ودیگری به وسیله ی یک منبع سرد خارجی ، سرد می شود (مثل یخ ).محفظه گاز دو سیلندر به هم متصلند ، وپیستون ها به طور مکانیکی به وسیله ی یک اتصال که چگونگی حرکت انها را معین می کند به یکدیگر متصلند .
دو پیستون در انیمیشن بالا تمام مراحل سیکل را انجام می دهند .

سیکل استرلینگ 4 مرحله دارد :
1- حرارت به گاز داخل سیلندر گرم منتقل می شود (چپ) و سبب ایجاد فشار می شود این فشار پیستون را مجبور می کند تا به سمت پایین حرکت کند و این قسمتی از سیکل استرلینگ است که کار انجام می دهد .
2- هنگامی که پیستون راست به طرف پایین حرکت میکند پیستون چپ بالا می آید .این جابجایی گاز داغ را به داخل سیلندر سرد می راند ، که به سرعت گاز داخل منبع سرد را ، سرد می کند و فشار آن کاهش می یا بد .این عمل فشرده کردن گاز را در قسمت بعدی سیکل ساده تر می کند .
3- پیستون داخل سیلندر سرد (راست) شروع به فشرده کردن گاز می کند و گرمای تولید شده توسط این متراکم سازی به وسیله ی منبع سرد حذف می شود .
4- هنگامی که پیستون چپ پایین می رود پیستون سمت راست بالا می آید .این عمل گاز را به داخل سیلندر گرم می راند ،که به سرعت گرم شده و فشار ایجاد می کند .در این هنگام سیکل تکرار می شود .
موتوراسترلنگ فقط در طول مرحله اول سیکل نیرو تولید می کند . در این جا دو روش برای افزایش قدرت خروجی از سیکل استر لیتگ وجود دارد :
• افزایش قدرت خروجی در مرحله اول : در مرحله اول سیکل، فشار گاز گرم، پیستونی که کار انجام می دهد را می راند ، افزایش فشار در طول این قسمت از سیکل قدرت خروجی موتور را افزایش می دهد .یک راه افزایش فشار، افزایش دمای گاز است . هنگامی که ما بعدا به دو پیستون موتور استرلنگ در این مقاله نگاه کنیم خواهیم دید که چگونه یک وسیله که ریجناتور نامیده می شود قدرت خروجی موتور را به وسیله ی حرارت ذخیره شده ی لحظه ای بهبود می بخشد .
• کاهش قدرت استفاده شده در مرحله 3 :در مرحله سوم سیکل ، پیستون روی گاز کار انجام می دهد و از قسمتی ازکار ایجاد شده در مرحله اول استفاده می کند . کاهش فشار در طول این مرحله از سیکل، می تواند قدرت استفاده شده در این مرحله را کاهش دهد (و به طور موثر قدرت خروجی افزایش می یابد ). یک راه کاهش فشار سرد کردن گاز در دمای پایین تر است .
این بخش سیکل ایده آل استرلینگ را توضیح داد .کار واقعی موتور به دلیل محدودیتهای طراحی فیزیکی مقداری با سیکل ایده آل اختلاف دارد .
 

spow

اخراجی موقت
در دو قسمت بعدی ما نگاهی به دو نوع مختلف موتورهای استرلنگ می کنیم .تحلیل نوع جابجا شونده موتور ساده تر است بنابراین ما این نوع را شروع می کنیم .

نوع جابجا شونده موتور استرلینگ :
به جای داشتن دو پیستون ،نوع جابه جا شونده یک پیستون دارد که جابه جا می شود .جابه جا کننده برای کنترل موقعی که مخزن گاز گرم و یا موقعی که سرد است به کار می رود .این نوع موتور استرلینگ اغلب به صورت نمایشی در کلاس درس استفاده می شود .شما حتی می توانید قطعات آنرا برای سر هم کردن بخرید .
.
به عبارتی حرکت موتور بالا مستلزم یک اختلاف دما بین بالا و پایین سیلندر بزرگ است . در این مورد ، اختلاف بین دمای دستتان و هوای اطراف آن برای چرخش موتور کافی است
.در این موتورها
1- پیستون قدرت :که پیستون کوچکتر در بالای موتور است و به طور محکم محفوظ شده است وبه علت انبساط گاز داخل موتور بالا می آید .
2- جابه جا کننده :که پیستون بزرگ در تصویر است .این پیستون در داخل سیلندر بسیار آزاد است بنابراین هوا به سادکی بین قسمت گرم و سرد موتور هنگامی که پیستون بالا و پایین می رود می تواند حرکت کند .
جابه جا کننده بالا و پایین می رود تا گاز داخل موتور گرم و سرد شود .دو موقعیت برای این حالت وجود دارد :
• هنگامی که جابه جاکننده نزدیک بالای سیلندر بزرگ است بیشتر گاز داخل موتور توسط منبع گرم ، گرم و منبسط شده است و فشار ایجاد شده درداخل موتور، نیروی بالا برندگی پیستون را ایجاد می کند .
• هنگامی که جابه جاکننده نزدیک کف سیلندر بزرگ است بیشتر گاز داخل موتور سرد و متراکم شده است که سبب افت فشار می شود و پایین آمدن پیستون قدرت را ساده تر می کند و گاز فشرده می شود .
موتور مکررا گاز گرم وسرد می کند و از گاز منبسط و منقبض شده انرژی دریافت می کند .
ما نگاهی به موتور استرلینگ دو پیستونه خواهیم داشت .

موتور استرلینگ دو پیستونه:
در این موتور ،سیلندر به وسیله ی مشعل خارجی گرم می شود . سیلندر سرد با جریان هوا سرد شده و در آن بالا و پایین می رود تا به فرایند سرد شدن کمک کند . میل رابط هر پیستون به یک دیسک کوچک متصل است که در حال چرخیدن به یک فلایویل بزرگ متصل است و هنگامی که نیرویی توسط موتور تولید نمی شود باعث تداوم حرکت پیستون می شود .

1- در قسمت اول سیکل ، فشار تولید می شود و پیستون را به حرکت به سمت چپ مجبور می کند و کار صورت می گیرد . پیستون سرد چون در موقعیتی است که در حرکت خود تغییر جهت خواهد داد تقریبا ساکن باقی می ماند .
2- در مرحله بعدی ، هر دو پیستون حرکت می کنند ،پیستون گرم به سمت راست و پیستون سرد به سمت بالا حرکت می کند . این عمل گاز را بیشتر به سمت رجیناتور و پیستون سرد حرکت می دهد .رجیناتور وسیله ای است که به طور موقت حرارت را می تواند ذخیره کند و از شبکه سیمی که گاز گرم از بین آن عبور می کند ساخته شده است .سطح بزرگ شبکه سیمی، حرارت را جذب می کند وآن را به آرامی به محیط سرد می دهد .
3- پیستون در سیلندر سرد شروع به متراکم کردن گاز می کند .گرمای ایجاد شده توسط این تراکم به واسطه ی سطح سرد از بین می رود .
4- در آخرین مرحله سیکل هر دو پیستون حرکت می کنند ، هنگامی که پیستون گرم به سمت چپ حرکت می کند پیستون سرد به سمت پایین حرکت می کند .
این عمل گاز اطراف رجیناتور (جایی که در طول سیکل قبلی گرما را ذخیره کرده بود ) را به داخل سیلندرگرم می راند .در این لحظه سیکل دوباره تکرار می شود.
شما ممکن است از اینکه هیچ درخواستی برای تولید انبوه موتور استرلینگ نبوده است تعجب کرده باشید .
در بخش بعدی ما به برخی دلایل آن اشاره می کنیم.

چرا موتورهای استرلینگ متداول نیستند؟
دو ویژگی وجود دارد که ساخت موتورهای استرلینگ را برای استفاده در بسیاری از کاربردها مانند بسیاری از ماشین ها و کامیون ها غیر عملی می کند .
به دلیل اینکه منبع حرارت در خارج است برای موتور مقداری طول می کشد تا به تغییرات گرمایی داخل سیلندر عکس العمل نشان دهد. برای انتقال حرارت بین دیواره های سیلندر و گاز داخل موتور زمانی صرف می شود . این بدین معناست که :
• موتورقبل از اینکه کار مفید را ایجاد کند به مقدارزمانی نیاز دارد تا گرم شود .
• موتور نیروی خروجی اش را نمی تواند به سرعت تغییر دهد .
این نقایص باعث شده است که این موتور با موتورهای احتراق داخلی اتومبیل جایگزین نشود. هر چند که وجود موتور استرلینگی که به ماشین هیبریدی نیرو می دهد امکان پذیر است .
موتورهاي استرلينگ عليرغم مزاياي ويژه اي که نسبت به موتورهاي احتراق داخلي دارند، داراي اين عيب عمده هستند که به خاطر نحوه انتقال انرژي گرمايي، توان مورد نياز را با تاخير تامين مي کنند. کندي عکس العمل موتورهاي استرلينگ در مقابل تغييرات بار ورودي باعث محدوديت کاربردهاي صنعتي آنها خاصه در مواردي که نظير خودرو، نياز به تغييرات سريع بار وجود دارد گرديده است. مقاله حاضر روشي را براي اين حل مشکل در کلاس وسيعي از موتورهاي استرلينگ ارايه مي نمايد. در اين مقاله طراحي سيستم کنترلي، بر روي مدل رياضي غير خطي موتور استرلينگ نوع گاما که با استفاده از نتايج تجربي به دست آمده، اعمال شده است. سيستم کنترلي پيشنهادي بر مبناي تنظيم دو عامل دما و فشار به عنوان ورودي هاي کنترلي طراحي و ارايه شده است. نشان داده شده است که اين سيستم دو ورودي – يک خروجي، توانايي پاسخگويي به تغييرات سريع توان را دارد
در موتورهاي استرلينگ، علت اصلي كندي عكس العمل موتور نسبت به تامين توان مورد نياز آن است كه تامين انرژي سيستم به وسيله انتقال انرژي حرارتي از طريق پوسته گرمكن به گاز عامل داخل سيلندر انجام مي شود. چون انتقال انرژي حرارتي از طريق پوسته به كندي انجام مي شود، برخلاف اكثر سيستمهاي كنترلي، درموتورهاي استرلينگ عملگر سيستم خود داراي بيشترين تاخير زماني است. ، به منظور افزايش سرعت عكس العمل موتور استرلينگ به تغييرات توان مورد نياز، علاوه بر وروديهاي كنترلي دما و فشار، سرعت پيستون جابجايي نيز در نظر گرفته شده است. به اين ترتيب، سيستم كنترلي نخست درشرايط دما ثابت، براساس توان مورد تقاضا، ازجداول سرعت- توان، سرعت مناسب موتور را انتخاب مي نمايد. اين سرعت در ابتدا توسط يك موتور الكتريكي كمكي DC تامين مي شود. سپس، با مقايسه سيگنال خروجي، توان حاصله با توان مورد نياز، فرامين كنترلي براي تنظيم فشار و دماي گاز عامل تعيين مي شوند. در مدلسازي موتور استرلينگ فرض ايزوترم بودن فرايند حذف شده است تا رفتار مدل به موتور واقعي نزديكترباشد. نتايج شبيه سازي سيستم مدار بسته با كنترلر طراحي شده نشان دهنده افزايش موثر سرعت عكس العمل موتور است. همچنين، نشان داده شده كه سيستم كنترلي در مقابل اغتشاشات خارجي و داخلي نيز مقاوم است. اين اغتشاشات به صورت تغيير در دماي منبع سرد و تغيير در پارامترهاي سيستم اعمال شده است. به دليل ثابت بودن گشتاور موتور هاي استرلينگ در محدوده وسيعي از سرعت، در سيستم كنترلي فرض شده راندمان موتور كمتر دستخوش تغيير مي شود

دانشمندان تلاش ميكنند موتورهاي گرمايي را به بالاترين بازده ممكن يعني بازده كارنو ( بازدهي كه موتور گرمايي بتواند بدون اتلاف انرژي در جهت عكس(يخچال) هم كار كند يعني يخچالي كه به همان خوبي اي كه يخچال است بتواند موتور هم باشد يا بر عكس !) برسانند.موتور استر لينگ نمونه عيني قانون ترموديناميك در مورد موتورهاي گرمايي است( حتي بهتر از موتور بخار پيستوني) چون دقيقآ همان تعاريفي كه در ترموديناميك از ان مي شود را مي توان بدون هيچ تغييري در مورد موتور استرلينگ به كار برد( مثلآ موتورهاي چهار زمانه كار براتوري مرحله تخليه را مترادف بامرحله سرد شدن گاز محبوس( ! در ترموديناميك گاز كاري يا سيستم درون استوانه اي محبوس شده و هيچ ارتباط مستقيمي با محيط بيرون ندارد ضمن اينكه در شرايط ايدئال هميشه گاز در تعادل(شرايط استاندارد)است)در نظر مي گيريم) ولي در موتور استرلينگ واقعآ گاز محبوس را سرد مي كنيم و احتياج به هيچگونه تطبيق دادن فرايند ها و فرض انگاري نيست.
پس موتور استرلينگ براي ياد گيري اصول ترموديناميك مدلي بسيار عالي است به همين خاطر در كشورهاي غربي براي يادگيري بهتر اصول ترموديناميك دانش اموزان را با اين موتورها اشنا مي كنند ومثلآ دانش اموزان ترغيب مي شوند كه خودشان با وسايل ابتدايي مانند قوطيهاي كنسروو..كار دستي هايي از موتورهاي استرلينگ بسازند وقتي بچه ها مي بينند موتوري كه با دست خودشون ساخته اند و سر كلاس معلم قواعد حاكم بر ان را توضيح داده واقعآ كار مي كند اشتياق به يادگيري زيادي درونشان به وجود مي ياد

به عنوان يك مدل مي توان گفت يخچال شما توسط يك موتور استرلينگ كار مي كند.
قبلآ گفته بودم كه پمپها وموتورهاي شيميايي و به طور كلي انبساطي داراي اصول كار كرد يكساني هستندواقعآ مهيج است وقتي مي بينيد مطالب تئوري اينگونه و بدون هيچ اشتباه و خطايي به عمل تبديل مي شوندصرفآ با چند فرمول و قاعده كه بر مبناي اصول رياضي است در اكثر مورد وسيلهاي اختراع مي شود و سپس قوانين و فرمولها براي توجيه رفتار ان كشف مي شوند ولي اينكه از رابطه يا فرمولي وسيله اي ساخته شود كاري به مراتب مشكلتر است و فقط از پس افراد خاصي بر مي ايد...

دانش طراحی موتور استرلینگ :
شما اگر بخواهيد مطمئن باشيد مي تونيد بدون دانشگاه رفتن يك متخصص طراح موتورخيلي ماهر باشيد درست است كه براي طراحي حتي يك موتور چهار زمانه نسبتآ ساده به چند صد نفر نياز داريم تا هر كدام كار بخصوصي را انجام بدهند ولي حتي يك نفر متخصص هم مي تونه كار همه ي اونها را انجام بده به شرطي كه مهارتهاش را طي سالها روز به روز زياد كنه تا بالاخره در اين زمينه متخصص شود اگر سالها پيش حتي يك نفرايراني خودش را وقف موتور كرده بود الان مجبور نبوديم يك موتور با فناوري سطح متوسط اروپاي فعلي را موتور ملي خودمون بناميم در صورتي كه اصلا مي تونيم اونرا موتوري الماني بناميم من اصلآ نميخوام قدر نشناسي از زحمات محققان كشورمون كنم ولي حقيقت تلخ اينه كه در ايران چنين فردي كه بتونه فناوري طراحي موتور رابراي ايران بومي كنه نيست حالا شما ميتونيد از همين حالا مهارتهاي طراحي خودتون را تقويت كنيد تا انشاالله بتونيم دين خودمون را به كشورمون ادا كنيم اولين كار دادن طرح اوليه است كه ميتونه مال خودتون باشه يا كس ديگري
 

spow

اخراجی موقت
ابتدا اصول كاركرد موتور را مشخص كنيد و ببينيد ايا تا بحال چنين موتوري ساخته شده وپس از ساختن نمونه ي اوليه و مطمئن شدن ازكار كرد صحيح ان شروع كنيد به بهينه سازي طرح اوليه پس از كامل شدن بهينه سازي و طراحي اوليه كليه اجزاشروع مي كنيم به طراحي دقيق اجزاء امروزه با وارد شدن نرم افزارهاي بسيار قوي در زمينه ي شبيه سازي واناليز كارها بسيار سريعتر و دقيقتر انجام مي شودولي بازهم مجبوريد در بسياري مواقع از همان روشهاي سنتي استفاده كنيد در زمينه ي موتور شما به دو دانش اصلي تر موديناميك و ديناميك بايد احاطه ي كامل داشته باشيد و همچنين با يد رياضيات خودتون را بخصوص در زمينه ي حل معادلات ديفرانسيلي قوي كنيداين دروس بيشتر در دانشگاهها شامل دروس: مكانيك سيالات،تر موديناميك،مقامت مصالح ، طراحي اجزاء ديناميك ،ارتعاشات،طراحي مكانيزمها.. مي باشدبراي تمرين يك قطعه رادر نظر بگيريد مثل ميل لنگ ابتدا حركت انرا در كل مجموعه بررسي كنيد بينيدچند درجه ازادي دارد نقاط تكيه گاهي و قيد ان كجاست حدس بزنيد به چه قسمتهايي بار بيشتري وارد مي شوندچه قسمتهايي ميتونند باعث ارتعاش شديتري در سيستم شونداگر مي تونيد با فرملهايي كه بلديد نقاط بحراني سيستم را پيدا كنيدو هر قطعه اي را جدا گانه طراحي كنيدو اگر با نرم افزار ها اشنايي داري انها را تحت تنشهاي استاتيك ديناميكي و حرارتي قرار دهيد من هميشه در منزلم يك موتور همراه با كوليس ميكرو متر و ساعت اندازه گيري دارم در مواقع بي كاريم به سراغشون مي رم دقيقآ قطعات اونرواندازه گيري مي كنم و فكر مي كنم كه چرا مثلآ قطر اينجا بيشتر است و قطر اينجا كمتروچرا فلان قطعه اين شكل را داردو...و سعي مي كنم با فرمولهايي كه بلدم قطعه مورد نظرم را طراحي كنم و بعضي مواقعكه نتيجه مطلوب نمي رسم به مراجع ديگر رجوع مي كنم.به اين صورت در علم طراحي پيشرفت زيادي پيدا مي كنيدو به جايي مي رسيد كه با ديدن هر موتوري نقاط ضعف و قوت طراحي اش برايتان نمايان مي شودو با مواجه شدن با طرحهاي جديد آنآ چهار چوب و روند طراحي ان برايتان نمايان مي شود
رفتار سوخت را در موقع واكنش بررسي كنيد ضربه انفجار اونرو پيداكنيد و اثراتش را بر محفظه ي احتراق اگر مي تونيد با نرم افزار بدست بياريد.
بهترين شكل و جنس را براي قطعات پيدا كنيد همه ي قطعات طراحي شده را ادغام كنيدو بهينه ترين حالت را پيدا كنيدشايد چيزي كه به دست مي اوريد اصلآ با واقعيت صدق نكند ولي شما چيزهاي زيادي ياد مي گيريدچون مجبوريد به منابع زيادي رجوع كنيدتا به پرسشهايي كه در ذهنتان بوجود امده پاسخ دهيد و جسارت طراحي قطعات جديد درونتان بوجود مي ايد
اگر بازم خواستيد پيش بريدو مشخص كنيد چه قطعاتي را نمي توان به سادگي ساخت ويا ساختشون گرون تموم مي شه اگه مي تونيد اونرا طوري طراحي كنيدكه بشه راحت ساختش وگرنه يكم بررسي كنيد ببينيد مي تونيد اجزاء ديگر را طوري تغير دهيد كه بتونيداون قطعه را دوباره طراحي كنيد و اگر بازم نشد ببينيد گرون تموم شدن قطعه بهتره يا طراحي مجدد مكانيزم و بالاخره طرحتون را كامل كنيد لازم نيست از قطعات پيچيده شروع كنيدمي تونيد از مكانيزمهاي كاملآ ساده واستاتيك شروع كنيد
در ابتدا شايد سردر گم باشيدو اصلآ ندونيد بايد چكار كنيدولي كم كم راه مي افتيد.
موتور دیزلی تنها در محلی كه هوا وجود دارد، می تواند كاركند. موتور دیزلی، صدایی بسیار بلند تولید می كند كه برای زیردریایی بسیار نامناسب است. زیردریایی ها در هنگام غوطه ور شدن، از باتری هایی كه تنها برای یك روز قابلیت شارژ دارند، استفاده می كنند. موتورهای اتمی این محدودیت ها را ندارند، اما شركت سوئدی تولید كننده زیردریایی كوكافر AB راه حل دیگری را پیشنهاد می كند.این سازنده، موتورهای استرلینگ را درون تولیدات خود نصب می كند. این موتورها نیروی لازم را برای نیازهای الكتریكی زیردریایی ها فراهم می كنند. این طرح موتور نیازی به هوا ندارد و در همین حال دیزلی است و ذخیره اكسیژن را با خودش حمل می كند. به گفته لارس لارسون، مدیر بخش استرلینگ شركت، این زیردریایی می تواند هفته ها زیر آب بماند. برخلاف موتورهای دیزلی دیگر، موتور استرلینگ بسیار بی سروصدا كار می كند. موتور استرلینگ در نوع خود پدیده ای شگرف است، شاید به این دلیل است كه تعداد كمی از آنها در اطرافمان وجود دارند. هنگامی كه این گونه موتور اختراع شد، در قیاس با موتورهای بخار امنیت بیشتری داشت، اما با ظهور موتورهای درون سوز از وجهه آنها كاسته شد. با این حال، آنها هیچ گاه از رده خارج نبوده اند. سیكل استرلینگ در اسباب بازی های ساخت شركت «آمریكن استرلینگ»، با گرمای دست كار می كنند. موتورهای استرلینگ در خنك كننده های انجمادی و تولید نیرو در بخش های خاصی از صنعت به كار می روند، اما در ماه های اخیر، خبرهایی به گوش می رسد كه نشان دهنده فزونی توجه به این موتورها است. توسعه دهندگان موتورهای استرلینگ می گویند كه موتورهای آنها بازده انرژی بالایی دارند و دوام آنها از دیگر انواع موتورهای با كاركرد یكسان بیشتر است. این موتورها ساكت و آرام كار می كنند، زیرا سیكل های استرلینگ برخلاف موتورهای درون سوز، نیازی به انفجار سوخت برای به حركت درآوردن پیستون ها ندارند. تنها نیاز آن حرارت دائمی است. تفاوتی ندارد كه این حرارت از آتش مواد نفتی، شیمیایی، واكنش هسته ای و یا نور خورشید گرفته شده باشد. هنگامی كه دكتر رابرت استرلینگ در سال ۱۸۱۶ موتوری را كه اكنون به نام او خوانده می شود، به ثبت رسانید، انتظار داشت نتیجه ای درخور از تلاش های خود بگیرد. قصد او این بود كه راه حل جانشین امنی برای بویلرهای بخاری كه بر اثر ساخت بد مخازن، كاركنان اطراف آن را به كشتن می داد، بیابد. گازی كه درون سیلندر محبوس نگه داشته می شود، به تدریج گرم و سرد می شود تا پیستون را به حركت درآورد. همانند موتور بخار، منبع حرارت بیرون از سیلندر قرار داده می شود، اما فشار داخل آن بسیار كمتر از موتورهای بخار است. با ظهور استیل بسمر، كارآیی و ایمنی دیگ های بخار بهبود یافت و ایده استرلینگ كم رنگ تر شد. موتورهای استرلینگ برای ساخت به ماشین كاری دقیق نیاز دارند و در مقایسه با ماشین های بخار نیروی كمتری تولید می كنند. درست هنگامی كه دنیا در حال گذار از دوران دیگ های بخار به دوران موتورهای درون سوز بود، ایراد بزرگ زمان طولانی گرم كردن موتور استرلینگ آن را در حاشیه قرار داد. شركت استرلینگ تكنولوژی چند پروژه فضایی و زمینی دارد كه با استفاده از همین موتورها انرژی لازم را برای این پروژه ها فراهم می كند. یكی از این ژنراتورها برای ناسا ساخته شده است. این ژنراتور ویژگی های بازده بالا و كاركرد درازمدت را كه برای یك كاوشگر ژرفنای فضا حیاتی هستند، فراهم می آورد. یك مجموعه تست با خروجی ۱۰ وات كه با این موتورها كار می كند، آگوست گذشته۶۰۰/۸۷ ساعت كار مداوم را كه معادل ۱۰ سال كار بدون نیاز به تعمیرات و كاهش كارآیی است، رد كرد. به گفته موسس این شركت، این سیستم تست به وسیله منبع حرارتی الكتریكی نیرودهی می شود، اما خود سیستم به گونه ای طراحی شده است كه بتواند در فضا به وسیله یك رادیو تلسكوپ تغذیه شود. این موضوع سوژه مقاله ای بود كه در سال ۱۹۹۶ در شماره فوریه مجله مهندسی مكانیك به چاپ رسید. عنوان مقاله « موتورهایی كه هرگز خورده نمی شوند» بود. هرگز زمان زیادی است، البته ۱۰ سال كار بدون وقفه هم زمان زیادی است. یكی از ویژگی های موتورهای استرلینگ امروزی این است كه اجزایی كه مالش دائم روی یكدیگر داشته باشند، ندارند. پیستون لقی ۲۵ میكرومتری درون سیلندر را دارد و یاتاقان های منحنی، به ویژه دیسك های فلزی با چاك های مارپیچی به خوبی مهار می شوند. آنها از طرفین صلب هستند و پیستون را در مركز نگاه می دارند. با حركت پیستون آنها نیز حركت نرم و خمیده ای را انجام
می دهند. پیستون یك آلترناتور خطی را به حركت در می آورد. هیچ اتصالی برای تبدیل حركت خطی به دورانی صورت نمی گیرد. موتور و ژنراتور هر دو درون یك محفظه گرد آمده و ایزوله شده اند.ایزولاسیون محفظه به دلیل انتخاب گاز هلیم به جای هیدروژن درون موتور است.
هزینه هلیم بالاتر است، اما برای این شیوه طراحی بهتر جواب می دهد. هیدروژن به طور اجتناب ناپذیری از فلز داغ تراوش می كند و به طور نامحسوسی انرژی را در سیستم به هدر می دهد. هلیم برای سرهای هیترها شكنندگی ایجاد نمی كند و مشكلات مربوط به ایمنی حمل و نقل هیدروژن را ندارد. «استرلینگ تكنولوژی می گوید كه در حال حاضر در حال تولید ژنراتورهای ۱۰ وات و ۵۵ وات است و پیش بینی می شود كه در مجموع ۴۰ سیستم را در ظرف سه سال آینده به دست مشتریان برساند. پروژه دیگری كه این شركت سرگرم كار روی آن است، یك ژنراتور متحرك برای ارتش است. این ژنراتور دیزلی، آب گرم مورد نیاز برای آشپزخانه صحرایی و یك كیلووات الكتریسیته را فراهم خواهد آورد. یك شركت هلندی به همراه موسسه ای تحقیقاتی از همان كشور، سیستمی مشابه برای مصارف خانگی ساخته اند. سیستم شركت اناتك از یك دیگ تشكیل شده است كه بخشی از انرژی حرارتی را برای تولید الكتریسیته به كار می گیرد. تا به حال ۱۰ دستگاه ازآن در خانه های دورافتاده نصب شده اند. شركت مجزای دیگری به نام سیستم های انرژی استرلینگ به همراه آزمایشگاه های ملی ساندیا از دیش های كولكتور برای متمركر كردن نور خورشید استفاده می كنند تا بتوانند حرارت مورد نیاز برای یك سیستم ژنراتور استرلینگی را فراهم كنند. به گفته باب لیدن، مدیر سیستم های انرژی استرلینگ، ژنراتورهای استرلینگ هریك به تنهایی می توانند حداكثر ۲۵ كیلووات، از یك دیش ۹۰ متری تولید كنند. چنین مساحتی ۰۰۰/۹۰ وات انرژی خورشیدی را جذب می كند و در نتیجه نرخ بازده ۳۰ درصد است. برای مقایسه، پانل های فتوولتاییك موجود دربازار، كه نور خورشید را به طور مستقیم به الكتریسیته تبدیل می كنند، بازده هایی كمتر از ۱۵ درصد دارند. سیستم های فتوولتاییك با قدرت یك كیلووات كه نور خورشید را متمركز می كنند و بازده بالای ۲۵ درصدی دارند نیز، به بازارآمده اند.
دیش شركت استرلینگ انرژی M۲ ۹۰ نور خورشید را روی مساحتی به قطر معادل ۲۰ سانتی متر متمركز می كند تا موتور استرلینگ چهار پیستونی كه یك ژنراتور دورانی را به راه می اندازد، تغذیه كند. شركت دیگری كه نیروگاه های تولید الكتریسیته دارند نیز، به گونه ای دیگر از این موتورها استفاده می كنند. سوختی كه این موتورها را گرم می كند، از نفت سبك همراه با اسیدهای چرمی كه از كارخانه های روغن گیاهی گرفته می شوند، تشكیل شده است. این عصاره های پسماندهای روغن گیاهی، قیمت كمی دارند و معمولاًدر مخازن ذخیره می شوند. این شركت امیدوار است كه بتواند ۳۰ درصد از هزینه ۷/۱ میلیون دلاری پروژه را با دریافت كمك های ایالت نیوجرسی برای به كارگیری انرژی های بازگشت پذیر و پاكیزه جبران كند. سوختی كه شركت آرهوس استفاده می كند، برای موتورهای درون سوز كنونی بسیار خورنده است، اما در موتورهای استرلینگ به خوبی جواب می دهد، زیرا محصولات احتراق با هیچ یك از قطعات متحرك موتور تماس ندارند. تعمیرات و نگهداری شامل روان كاری و تعویض سیالات روانكاری، تعویض رینگ های پیستون ها، كار تریج های پوشش میله ها و دیگر اجزایی است كه در عوض هر ۰۰۰/۱۰ ساعت كار ۱۶ ساعت زمان می برد. سخن آخر این كه موتورهای استرلینگ در ۱۹۰ سال زمان پیدایششان نه هرگز از رده خارج شده اند و نه جایگاه مستحكمی یافته اند. در كتاب ها و سایت های مربوط به صنعت همواره از این موتورها یاد می شود. شركت هایی هم در تلاشند تا با تولید انبوهی از محصولات استرلینگی وارد بازار تولید انرژی خانگی تجاری شوند.
سازندگان این موتورها همواره شعار «سبزتر، ساكت تر و خارق العاده تر» را سر می دهند و اگر این موتورها فراگیر شوند، شاید همگان بهتر به آنها عادت كنند.

منبع :

www.articles.ir
 

fluid2008

عضو جدید
کاربر ممتاز
سلام.واقعا مهندس دستتون درد نکنه.خیلی مطالب مفیدی در حیطه تخصصی خودتون قرار میدهید
 

Nika-eng

عضو جدید
سلام
من اطلاعاتي در مورد برج خنك كن مرطوب مي خواستم ميتونيد كمكم كنيد؟
 

spow

اخراجی موقت
برج خنک کننده

برج خنک کننده :
دراکثر کارخانجات کوچک و بزرگ یکی از مهمترین و اساسی ترین دستگاهها می توان انواع برجهای خنک کننده را نام برد.
برجهای خنک کننده علاوه بر آب به منظور خنک کردن سیالاتی دیگر در صورت لزوم مورد استفاده واقع می شود.
با توجه به اینکه برجهای خنک کننده معمولاًً حجیم می باشند و بعلت پاشیدن آب در محیط اطراف خود و خرابی تجهیزات آن را معمولاًٌ در انتهای فرایند نصب می کنند.
اگراز وسایل برجهای خنک کننده صرف نظر نشود برای ساخت برج تکنولوژی بالایی نیاز نیست همانطور که در ایران در حال حاضر ساخت این برجها در حد وسیعی صورت می گیرد .برجها با توجه به شرایط فیزیکی و شیمیایی خاص خود دچار مشکلاتی می شوند ولی معمولاٌ زمانی لازم است تا این مشکلات برج را از کار بیاندازد طولانی است.،ولی عملاٌ اجتناب ناپذیر است.
در این مجمعه تا سر حد امکان سعی شده است که دیدی نسبتاً کلی راجع به برج جنبه ای به خواننده منتقل شود و تا حد امکان از جزيیات مربوط به برجهای خنک کننده توضیح لازم داده شده باشد.


پیشگفتار :
برج خنک کننده دستگاهی است که با ایجاد سطح وسیع تماس آب با هوا تبخیر آسان می کند و باعث خنک شدن سریع آب می گردد.عمل خنک شدن در اثر از دست دادن گرمای نهان تبخیر انجام می گیرد، در حالی که مقدار کمی آب تبخیر می شود و باعث خنک شدن آب می گردد.باید توجه داشت آب مقداری از گرمای خود را به طریق تشعشع ،هدایتی وجابجایی و بقیه از راه تبخیر از دست می‌دهد.
بیشتر دستگاههای خنک کن از یک مدار بسته تشکیل شده اند که آب در این دستگاهها نقش جذب ، دفع و انتقال گرما را به عهده دارد، یعنی گرمای بوجود آمده توسط ماشین جذب و از دستگاه دور می سازد. این کار باعث ادامه کار یکنواخت و پایداری دستگاه می شود.
در دستگاههایی که به دلایلی مجبوریم آب را بگردش در آوریم و یا به کار ببریم باید بنحوی گرمای آب را دفع کرد. با بکار بردن برجهای خنک کننده این کار انجام می گیرد. در تمام کارخانه ها تعداد زیادی دستگاههای تبدیل حرارتی (heat exchanger) وجود دارد که در بیشترآنها آب عامل سرد کنندگی است.
بدلایل زیر آب معمولترین سرد کننده هاست:
1. بمقدار زیاد وارزان در دسترس می باشد.
2. به آسانی آب را می توان مورد استفاده قرار داد .
3. قدرت سرد کنندگی آب نسبت به اکثر مایعات( در حجم مساوی )بیشتر است.
4. انقباض و انبساط آب با تغییر درجه حرارت جزیی است.
هر چند که آب برای انتقال گرما بسیار مناسب است با بکار بردن آن باعث بوجود آمدن مشکلاتی نیز می شود.
آب با سختی زیاد باعث رسوب سازی در دستگاهها شده و همچنین از آنجایی که بیشتر این دستگاهها از آلیاژ آهن ساخته شده اند مشکل خوردگی بوجود می آید. از طرف دیگر بیشتر برجهای خنک کننده در بر خورد مستقیم با هوا و نور خورشید می باشند محیط مناسبی برای رشد باکتریها و میکرو ارگانیسم ها نیز می باشد که آنها نیز مشکلاتی همراه دارند.
وارد شدن گرد و خاک بداخل برج نیز در بعضی مواقع ایجاد اشکال می نماید.در کل این مشکلات باعث می شود که بازدهی دستگاه کم شده و در نتیجه از نظر اقتصادی مخارج زیادتری خواهند داشت. در این مجموعه طبیعت این مشکلات و شرایط بوجود آمدن آنها و راههای جلوگیری از آنها را بطور مختصر شرح خواهیم داد.موارد استفاده از برجهای خنک کننده را نیز در بخش های دیگری از این مجموعه را در بر می گیرد.

عموماً برجهای خنک کننده (cooling tower) را به سه گروه تقسیم می کنند:
1. برجهای خنک کننده مرطوب
2. برجهای خنک کننده مرطوب- خشک
3. برجهای خنک کننده خشک
در برجهای خنک کننده مرطوب، آب نقش اصلی و اساسی را داشته و هدف نیز همان خنک کردن آب است. این نوع دستگاهها که خود به چند گروه و دسته تقسیم می شوند در صنعت دارای کاربرد فراوانی است.
از یرجهای خنک کننده خشک بیشتر در مکانهای که آب کافی برای خنک کردن برج وجود ندارد استفاده می شود. عمل خنک کردن آب را نیز میتوان از برجهای سینی دار بصورت مرحله ای انجام داد.ولی عملاً بعلت وجود هزینه های زیاد ساخت ،نگهداری و کنترل سیستم این روش ، معمول نمی باشد.
برای انجام عملیات خنک سازی آب می توان از برجهای آکنده و سینی دار استفاده نمود.با وجود این در مواردی که فازهای مورد نظر آب و هوا با شند بعلت فراوانی و ارزان بودن فازهای فوق بدلایلی که در صفحه قبل ذکر شد از دستگاههای دیگری استفاده می گردد که ساختن و نگهداری آنها مستلزم هزینه های زیادی نمی باشد. از این جهت بیشتر دستگاههایی که در مقیاس صنعتی بکار می رود ساختمان و خصوصیات بسیار عمده ای را دارا است که اینک به انواع مختلف این دستگاهها اشاره می شود.

فصل اول
بررسی برجهای خنک کننده و اجزاء آن

برج خنک کننده : COOLING TOWER
برج خنک کن دستگاهی است که با ایجاد سطح وسیعی در تماس آب با هوا ، عمل تبخیر را آسان نموده و در نتیجه باعث خنک شدن سریع آب می گردد.
عمل خنک شدن در اثر از دست دادن گرمای نهان تبخیر انجام می گیرد در حالی که مقدار کمی آب بخار می شود و سبب خنک شدن آب می گردد.باید توجه داشت که آب مقدار اندکی از گرمای خود را از طریق تشعشع (Radiation) ودر حدود 4/1آن را از راه هدایت (Conduction) و جابجائی (Convection) و بقیه را از راه تبخیر از دست می‌دهد.
اختلاف فشار بخار آب بین سطح آب و هوا باعث تبخیر می شود.این اختلاف بستگی به دمای آب و میزان اشباع هوا از آب دارد.


مقدار گرمای که بوسیله مایعی جذب یا دفع می شود از رابطه زیر بدست می آید :
E=W×S×T
در رابطه بالا:
E :گرمای دفع یا جذب شده بر حسب BTU/hr یا CAL/hr
W :دبی مایع خنک شونده بر حسب lb/hr
S : گرمای ویژه مایع خنک کننده بر حسب lb.f/ Btu
T :کاهش دمای مایع خنک شونده بر حسب f

در حالیکه عمل خنک شدن از طریق تبخیر انجام می گیرد گر مای نهان تبخیر از دست داده شده باید به آن اضافه گردد و آن برابر است با حاصل ضرب گرمای نهان تبخیر در دبی .
مقدار تبخیر بستگی دارد به سطح بر خورد آب با هوا و همچنین شدت جریان هوا دارد. برای اینکه حداکثر بهره برداری که در طرح آن بکار رفته است رعایت شود در برجهای خنک کننده که آکنده های آن از نوع splash packing می باشد آب به صورت قطره های در سطوح برج پخش می شود تا سطح وسیعی بوجود آید البته برای این منظور می توان از آکنه های نوع film packing نیز استفاده کرد.
جریان هوا در برج به صورت کشش طبیعی با استفاده از دودکش های هذلولی شکل یا کشش مکانیکی بوسیله بادبزنهای مناسب در جهت مخالف آب ( counter-flow) و یا به طور متقاطع (cross-flow) با آن به جریان می افتد .
 

spow

اخراجی موقت
سیستم برج خنک کننده :

در سیستم برج خنک کننده آب گرم کندانسور از برج خنک کننده عبور می کند و با هوا تماس می یابد. در برجهای خنک کننده با کشش طبیعی ،پوسته خارجی برج از بتن مسلح ساخته شده ودر روی پایه ها تکیه دارد . هوا از قسمت پائین وارد برج خنک کننده می شود و به طرف بالا جریان می یابد و از دهانه بالای برج خارج می گردد.

انواع دیگری از برجهای خنک کننده که از چوب و سایر مصالح ساخته می شود نیز وجود دارد.در برجهای خنک کننده با کشش طبیعی هوا شکل برج طوری طراحی می شود که جریان سریع هوا در داخل برج بوجود آید.
آب گرم از کندانسور در ارتفاع 10 تا 15 متر بالاتر از سطح استخر به سیستم پخش کننده آب وارد می شود . در برجهای قدیمی تر صفحه ای که آب خروجی از کندانسور به آن ریخته می شود دارای سوراخهای منظمی در قسمت پائین است که آب از داخل این سوراخها به فنجانهای زیرین می ریزد. این فنجانها باعث پاشش آب و تبدیل آنها به قطرات کوچک می شوند. یک سیستم خیلی جدید برای پخش آب در برج خنک کننده بکار بردن لوله هایی است که در سطح بالای آن شیپوره هایی برای پاشش آب تعبیه شده است.
تبادل حرارت بین هوای بالارونده از برج و آبی که از برج سرازیر است با تغییر حرارت محسوس در اثر اختلاف درجه حرارت بین آب و هوا انجام می شود. سهم این قسمت از تبادل حرارتی خیلی کم است و قسمت عمده تبادل در اثر تبخیر مقدار کمی آب که پیوسته همراه هوا می باشد،انجام می شود. در اثر این عمل مقدار زیادی گرما از آب سرازیر شده در برج خنک کننده ( بستگی به مقدار آبی که تبخیر شده است) به هوا منتقل می گردد(Evaporating loss). ضمناً مقداری از قطرات آب بوسیله هوا بخارج از برج پراکنده می شود(Windage loss). برای جلوگیری از خروج قطرات آب یک شبکه چوب در اطراف برج و حدود 3 متر بالاتر از توده تخته ها قرار دارد . کمبود آب تبخیر شده در سیستم برج خنک کننده باید از منبع خارجی جبران شود که به آن ،آب تکمیلی یا آب جبرانی (Makeup) گویند . برای این منظور در صورت امکان از آب رودخانه استفاده کرد یا فاضلابها را تا حد امکان صاف و تصفیه کرده و استفاده نمود .
هنگامیکه از نظر فضای ساختمان برج خنک کننده محدودیتی وجود داشته باشد ظرفیت برج خنک کننده راتا حد امکان با استفاده از بادبزنهای مخصوص و بزرگی اضافه می نمایند. این بادبزنها مقدار عبورهوای خنک کننده در داخل برج را زیاد می نماید .



عوامل مؤثر در طراحی برجهای خنک کننده :
عوامل مؤثر در طراحی برجهای خنک کننده را بطور خلاصه می توان بصورت زیر بیان کرد :
1. میزان افت درجه حرارت (اختلاف دمای ورودی وخروجی برج)
2. اختلاف بین درجه حرارت آب سرد و درجه حرارت مرطوب هوا
3. دمای مرطوب محیط : اصولاً خنک کردن آب زیر این دما غیر ممکن است .
4. شدت جریان آب
5. شدت جریان هوا
6. نوع آکنه های برج
7. روش پخش آب
به تجربه ثابت شده است که برای هر 10 درجه فارنهایت افت دما در برج خنک کننده میزان تبخیر در حدود یک درصد کل آب در حال گردش می باشد .

چون نمک های کلرور حلالیت زیادی دارند غلظت یون کلر در آب ورودی به برج وآب در حال گردش راهنمای بسیار خوبی برای تعیین غلظت بوده و بنابراین همیشه باید آنرا بازدید و بررسی نمود .
افزایش غلظت مواد محلول و مواد معلق در آب در حال گردش در برج خنک کننده ایجاد اشکال می نماید که برای جلوگیری از افزایش غلظت مواد محلول و مواد معلق مقداری از آب در حال گردش را تخلیه می کنند که این آب در صنعت به زیر آب (Blow down) معروف است .
مقدار آب برج همچنین ممکن است تصادفی یا بوسیله باد تقلیل یابد . اصولاً در برجهای خنک کننده مقداری آب بصورت گرد درآمده و توسط باد یا کشش از برج خارج می شود .
مقدار تخلیه لازم در یرج برای کنترل مواد محلول و معلق مجاز را می توان از رابطه زیر بدست آورد :
M=(B+W)*C
که در رابطه فوق
B : مقدار زیر آب بر حسب gal/hr یا m3/hr
E : مقدار آب تبخیر شده بر حسب gal/hr یا m3/hr
C : ضریب غلطت پیشنهاد شده برای برج
W : مقدار آبی که توسط باد خارج می شود بر حسب gal/hr یا m3/hr
مقدار آبی که باد همراه خود از برج خارج می سازد در رابطه بالا منفی است ،زیرا آب مواد محلول و معلق را نیز با خود می برد . بنابراین تاثیر در غلظت و بالا بردن املاح آب ندارد .

مقدار آب لازم جهت آب کسری برج از رابطه زیر بدست آورد :
MAKE UP = E +B + W
اطلاعاتی که از طرف خریداران در اختیار فروشندگان قرار می گیرد در طرح برج اهمیت فراوانی دارد . مانند اختلاف دما ، مقدار آب در حال گردش ،مقدار زیر آب .
کمبود آب در اثر تبخیر و باد را با استفاده از رابطه های بالا بررسی می کنند .

قسمتهای اصلی برج خنک کننده:



الف) لوله ها و آکنه ها
شامل قسمتهای هستند که درجریان انتقال حرارت دخالت داشته در ضمن باعث می شود که مقدار آب گرد شده که همراه باد خارج می شود کم شده و از خروج آنها از برج جلوگیری شود.همچنین نگهدار خوبی برای قسمتهای دیگر برج می باشد . در مورد مشخصات آکنه ها در همین فصل توضیح داده خواهد شد.

ب)حوضچه
حوضچه در پائین برج قرار دارد که آب خنک کننده در آن جمع می گردد.به حوضچه یک جریان بنام آب تکمیلی یا آب جبرانی (MAKE UP) وارد می شود و یک جریان برای استفاده در دستگاههای تبادل حرارت از آن خارج می گردد .علاوه بر جمع آوری آب در حوضچه ،آب قبل از اینکه به سمت کندانسور پمپ شود صاف نیز می گردد.
حوضچه های برجهای بزرگ و مفید از بتن ساخته شده اند .عموماً این حوضچه ها طوری طراحی می شوند که برج بدون اضافه کردن آب جبرانی می تواند برای چندین ساعت کار کند .
از زهکش برای برطرف کردن لجن ته نشین شده و کنترل سطح آب در حالتی که جریان موج دار که در کف قرار دارد ترک می کند و به میان سرندی که از ورود اشغال تجمع یافته به ورودی پمپ جلوگیری می کند ،می ریزد .

پ)بادبزنها
در برجهای خنک کننده با کشش مکانیکی باد بزنهای نصب می شوند تا جریان هوای لازم را جهت عبور از آکنه ها تولید نماید .بادبزنها در برجهای خنک کننده با کشش مکانیکی کاربرد دارند . توضیح در این مورد ضرورتی ندارد و به همین مقدار اکتفا می شود .

ت) حذف کننده ها
این وسیله از خارج شدن قطرات آب بوسیله کشش هوا از برج جلوگیری بعمل می آورد . تیغه ها معمولاًطوری نصب می شوند که با سطح افق زاویه ای در حدود 45 درجه بسازد .جنس این تیغه ها از چوب ، فلز یا پلاستیک ممکن است ساخته شده باشند .درباره کشش و حذف کننده های کشش بعداً مفصلاً توضیح داده خواهد شد .

ث) آکنه ها
دو نوع آکنه ها که در برجهای خنک کننده ممکن است مورد استفاده قرار گیرد عبارتند از :
1. SPLASH PACKING
2. FILM PACKING
1. SPLASH PACKING :
در این نوع آکنه ها آب بر اثر برخورد با تیغه ها پخش و به صورت قطره قطره در آمده که در نتیجه ایجاد سطح وسیع می نماید .از آنجایکه قطرات آب همراه پیوسته بوده و وزن سنگین دارند این نوع دسته بندی ممکن است در اثر جریان دائمی از هم گسیخته گردد.

2. FILM PACKING :
در این نوع آکنه ها سطح وسیع از آب در اثر جریان آن در روی تیغه ها بوجود می آید . به طرق گوناگون می توان چنین سطح وسیعی ایجاد کرد
a. GIRD PACKING
در این نوع آکنه ها از یک سری شبکه های که معمولاً از چوب بوده و روی یکدیگر قرار گرفته اند استفاده می شود .این شبکه ها طوری نصب گردیده که همراه هر شبکه با شبکه های اطراف خود زاویه 90 درجه می سازند وباین شکل در سطوح شبکه ها پخش می گردد .
b. RANDOM PACKING
این نوع آکنه ها موادی با سطح زیاد درست شده که به طور نا منظم در داخل برج قرار دارند . یکی از دلایل نا مرغوب بودن این نوع آکنه ها ایجاد مقاومت زیاد در مقابل جریان هوا می باشد . این نوع آکنه ها دارای قسمتهای حلقوی است که قطر هر حلقه با طول آن برابر است . این حلقه ها از جنس های مختلفی یوده وسطح تماس آب با هوا را زیاد می کنند.
c. PLATE TYPE FILM PACKING
این نوع آکنه ها از صفحات نازک پلاستیکی چین دار ساخنه شده اند که با زاویه کمی کمتر از 90 درجه با سطح افق نصب شده اند. چین های روی صفحات باعث بوجود امدن سطح زیاد می گردند .
مشخصات و خصوصیات آکنه ها در بخش های آینده تشریح خواهد شد .آکنه ها باید طورب انتخاب شوند تا هم سطح تماس آب و هوا برای نسبتهای بالای انتقال حرارت و انتفال جرم مناسب یاشند و هم مقاومت کمتری در مقابل جریان هوا داشته باشند .آکنه ها باید محکم ، سبک و در برابر خوردگی و خراب شدن مقاوم باشد.

مشخصات و خصوصیات آکنه ها :
مشخصات و خصوصیات آکنه یک برج خنک کننده را در یک برج خنک کننده آزمایشی اندازه گیری می کنند. یک نمونه از این برج در نیروگاه برق groyden A در سال 1950 بنا شده بود و در آن زمان فکر می کردند بزرگترین نوع خود در کشور باشد . در این برج یک مقطع از آکنه با مربعی به ضلع 4 ft وعمق 8 ft را می توان زیر یک تغییر بار آب و هوا و اتلاف حرارتی برای اندازه گیری ضریب انتقال حجمی و مقاومت جریان هوا نصب و آز مایش کرد . بزرگی این برج یک مسئله اساسی است در غیر اینصورت مقدار آبی که به ظرف پائین دیواره ریزش می کند کافی است تا بر روی دقت آزمایش تاثیر بگذارد.
هر دو جریان آب وهوا توسط اوریفیس اندازه گیری می شود . جریان آب بیشتر در مقابل یک حجم اندازه گیری شده تانک ، چک خواهد شد.
 

spow

اخراجی موقت
برج خنك كننده:

در گزینش صحیح دستگاه خنک کننده آب متناسب با مقتضیات یک پروژه معین باید چند عامل اصلی را لحاظ کرد

توان خنک کنندگی , مسائل اقتصادی , سرویسهای مورد نیاز و شرایط طبیعی و . . .

این عوامل اغلب به هم وابستگی متقابل دارنداما هر یک بایستی جداگانه مورد بررسی قرار گیرند از آنجا که ممکن است انواع زیادی از دستگاهها توانایی تامین مقصود را داشته باشند عواملی همچون ابعاد دستگاه , مساحت محل نصب , حجم هوای جریانی , میزان مصرف انرژی فن و پمپ , موارد بکار رفته در ساخت دستگاه , سهولت یافتن دستگاه در بازار بر انتخاب نهایی تاثیر گذار خواهد بود.

برجهای خنک کن در اندازه های مختلف برای دفع حرارت از یک تا چند تن تبرید ساخته می شوند, برجهای بزرگ برای کاربردهای معین ساخته می شوند و معمولا از چندین سلول تشکیل می شوند که هر یک اجزای خاص خود را دارند.

محل نصب :

اگر بتوان برج خنک کن را در فضای باز با جریان هوای آزاد قرار داد در حصول یک بازده مناسب از برج مشکلی وجود نخواهد داشت اما چنانچه قرار باشد برج در داخل ساختمان و محصور بین دیوارها نصب شود موارد زیر بایستی مورد توجه قرار گیرد :

1) باید فضای کافی و بدون مانع مزاحم در اطراف برج وجود داشته باشد تا هوای لازم به برج برسد

2) هوای گرم خروجی از برج باید به گونه ای تخلیه شود که امکان بازگشت و گردش مجدد آن به برج وجود نداشته باشد زیرا گردش مجدد چنین هوایی در برج دمای مرطوب هوای ورودی به برج را افزایش می دهد و باعث گرم ماندن آب در خروج از برج می شود

گردش مجدد هوا به داخل برج هنگامی مورد توجه قرار می گیرد که چند برج در مجاورت هم باشند

تعیین محل نصب برج به عوامل دیگری هم بستگی دارد از قبیل استحکام محل نصب , تجهیزات اضافی برای تقویت آن , هزینه فراهم کردن تجهیزات اضافی برای برج و مسائل مربوط به معماری ساختمان و …

لوله کشی :

سیستم لوله کشی برج خنک کن بایستی به گونه ای طراحی شود که امکان انبساط و انقباض بین لوله ها فراهم باشد و چنانچه برج بیش از یک اتصال ورودی باشد باید جهت متعادل کردن جریان آب به هر یک از سلولهای برج شیر متعادل کننده نصب شود و چنانچه لازم باشو یکی از سلولهای برج جهت تامیرات از مدار خارج شود باید دارای شیر مسدود کننده جریان باشد

اگر دو یا چند برج بصورت موازی نصب شده باشند باید از یک لوله مشترک بین دو تشت برج جهت متعادل کردن آب داخل برج استفاده شود

به منظور ممانعت از سرریز آب داخل برج هنگام توقف کار تمامی مبدلها بایستی پایین تر از سطح آب برج قرار داشته باشند .

کنترل ظرفیت :

بیشتر برجهای خنک کن در معرض تغییرات قابل توجه دمای مرطوب هوا و بار در طول فصل گرم می باشند بدین لحاظ ممکن است جهت ابقای شرایط تجویز شده برای کارکرد مطلوب برج بعضی از روشهای کنترل ظرفیت به کار گرفته شود .

ساده ترین روش کنترل ظرفیت برجها تغییر سرعت فن می باشد که اغلب در برجهای چند سلولی به کار می رود با موتورهای دور متغییر میتوان این کار را انجام داد

روش دیگر در کنترل طرفیت استفاده از دمپر تنظیم کننده در دهانه خروجی فن سانتریفوژ می باشد

روش دیگر بای پاس کردن آب می باشد .

کار زمستانی برج خنک کننده :

اگر قرار باشد برج در دمای زیر صفر درجه کار کند باید موارد زیر بحث شود :

1) گردش باز آب در برج خنک کن

2) گردش بسته آب در یک سرد کننده تبخیری مدار بسته

3}آب تشت در برج خنک کن
 

spow

اخراجی موقت
تشريح عملكرد برج خنك كننده باز

وظيفه يك برج خنك كن باز، جذب گرما از يك فرايند و دفع آن به فضاي اتمسفر است كه اساساً اين دفع از راه تبخير صورت مي پذيرد. از آن جايي كه آب شركت كننده در فرايند خنك سازي در مدار برج خنك كن سيركوله شود، به علت تبخير تدريجي آب، غلظت مواد معدني در ان افزايش مي يابد. وقتي كه غلظت مواد معدني به اندازه دو برابر مقدار اوليه شد، گفته مي شود كه آب داراي دو سيكل غلظت مي باشد. هنگامي كه غلظت مواد معدني در آب به سه برابر مقدار اوليه رسيد، آنگاه داراي دو سيكل غلظت مي باشد.

كارايي اين قسمت براي بهره برداري موثر و اقتصادي بسيار پر اهميت مي باشد. براي اطمينان از حداكثر انتقال حرارت، سطوح اننتقال حرارت بايد در حد امكان تميز نگه داشته شود. اگر غلظت مواد معدني در برج خنك كن افزايش يابد، امكان تجمع رسوب و خوردگي افزايش مي يابد، بنابراين تصفيه آب موجب بهره برداري موثرتر از واحد انتقال حرارت خواهد بود.

سطوح انتقال حرارت، گرمترين نقطه اي است كه آب خنك كننده به آن مي رسد. حلاليت كربنات كلسيم در آبCaCO2كه در برج خنك كن وجود دارد)، با دما رابطه معكوس دارد، در نتيجه در سطوح انتقال حرارت، امكان نشست رسوب كربنات كلسيم، به وجود مي آيد. انباشته شدن لايه هاي رسوب كربنات كلسيم انتقال حرارت را كاهش مي دهد و اين مساله موجب خوردگي شده و نقاط داقي به وجود مي آورد كه خود موجب تنش حرارتي خواهند شد، همه اين موارد روي بازدهي و عمر مبدل حرارتي تاثير خواهند گذاشت.

يك روش ابتدايي براي جلوگيري از تشكيل رسوب ، تخليه بخشي از آب گردش كننده در مدار و جايگزين كردن آن با مقداري آب تازه است كه غلظت مواد معدني در آن كمتر باشد. براي تعيين حداكثر غلظت مواد معدني كه مي تواند بدون ايجاد رسوب در آب موجود باشد بايد آب جبراني كاملاً مورد برسي قرار گيرد. هدف از برنامه تصفيه ي آب اين است كه تعداد كه تعداد سيك هاي غلظت به حداكثر ممكن رسانده و در اين حال تشكيل رسوب، خوردگي و رشد ميكروبي را به حداقل برساند. مهمترين عاملي كه بايد كنترل شود تشكيل رسوب است كه به طور معمول به دليل اشباع تركيبات كلسيم در آب خنك كن ايجاد مي شود.

خدمات رفاهي شهري پالايشگاه نفت، صنايع شيميايي و بيشتر صنايع ديگر در سيستم هاي تهويه مطبوع خود و يا براسي خنك كردن يك سيال فرايندي در مبدل حرارتي به مقادير زيادي آب خنك كن احتياج دارند. در گذشته، خنك كنندگي با استفاده از از آب هاي موجود در درياچه ها، رودخانه ها و يا سيستم هاي آب شهري نزديك، بر اساس يك روش ((يك بار گذر)) انجام مي گرفت.

مشكلاتي مهم در اين روش به چشم مي خورد، مسدود شدن مبدل حرارتي با جامدات معلق (گل ولاي) و رشد بيولوژيكي در اين تجهيزات بود. هزينه هاي ناشي از خرابي تجهيزات و محدوديت هاي فزاينده ي سازمان محيط زيست، موجب شد صنايع به تصفيه آب و استفاده مجدد از آن به كمك برج هاي خنك كن روي بياورند. اين امر موجب شد كه نياز صنايع به آب تازه كاهش چشمگيري داشته باشد و مقدار گنداب تشكيل شده ي آنها نيز كاهش يابد.

در يك سيستم خنك كننده ي سيركوله، براي جذب گرمايي كه آب در حين عبور از تجهيزات و فرايندهاي صنعتي دريافت كرده است، آن را از مبدل هاي حرارتي، كانال هاي خنك كننده يا برج هاي خنك كن عبور مي دهند و بعد از خنك شدن دوباره آن را به جهت خنك كردن تجهيزات و فرايند ها به كار مي برند.

برج هاي خنك كن سيركوله، خنك كنندگي را از راه تبخير آب و همچنين با انتقال حرارت مستقيم به هوا هنگام عبور مستقيم آن از درون برج ايجاد مي كنند اصول اوليه كاري اين تجهيزات نسبتا واضح است، ولي تجهيزات انتقال حرارت مربوطه به طور گسترده اي به لحاظ قيمت و پيچيدگي باهم متفاوت هستند. به عنوان مثال، در صنايع شميايي ، به دليل طبيعت برخي فرايند ها، معمولا به مواد غير معمول براي ساخت نياز مي باشد. اين مساله موجب مي شود تجهيزات انتقال حرارت بسيار گران شده و نگهداري مناسب آن نيز از اولويت خوبي برخوردار شود.

اغلب مشكلات برج خنك كن ناشي از ناخالصي آب مي باشد. در سيستم هاي خنك كن معمولا سه مشكل وجود دارد:خوردگي، تشكيل رسوب و رشد بيولوژيكي

نكات فني برج خنك كننده باز

وظيفه يك برج خنك كن باز، جذب گرما از يك فرايند و دفع آن به فضاي اتمسفر است كه اساساً اين دفع از راه تبخير صورت مي پذيرد. از آن جايي كه آب شرکت كننده در فرايند خنك سازي در مدار برج خنك كن سيركوله شود، به علت تبخير تدريجي آب، غلظت مواد معدني در ان افزايش مي يابد. وقتي كه غلظت مواد معدني به اندازه دو برابر مقدار اوليه شد، گفته مي شود كه آب داراي دو سيكل غلظت مي باشد. هنگامي كه غلظت مواد معدني در آب به سه برابر مقدار اوليه رسيد، آنگاه داراي دو سيكل غلظت مي باشد.

كارايي اين قسمت براي بهره برداري موثر و اقتصادي بسيار پر اهميت مي باشد. براي اطمينان از حداكثر انتقال حرارت، سطوح اننتقال حرارت بايد در حد امكان تميز نگه داشته شود. اگر غلظت مواد معدني در برج خنك كن افزايش يابد، امكان تجمع رسوب و خوردگي افزايش مي يابد، بنابراين تصفيه آب موجب بهره برداري موثرتر از واحد انتقال حرارت خواهد بود.

سطوح انتقال حرارت، گرمترين نقطه اي است كه آب خنك كننده به آن مي رسد. حلاليت كربنات كلسيم در آب (CaCO2كه در برج خنك كن وجود دارد)، با دما رابطه معكوس دارد، در نتيجه در سطوح انتقال حرارت، امكان نشست رسوب كربنات كلسيم، به وجود مي آيد. انباشته شدن لايه هاي رسوب كربنات كلسيم انتقال حرارت را كاهش مي دهد و اين مساله موجب خوردگي شده و نقاط داقي به وجود مي آورد كه خود موجب تنش حرارتي خواهند شد، همه اين موارد روي بازدهي و عمر مبدل حرارتي تاثير خواهند گذاشت.

يك روش ابتدايي براي جلوگيري از تشكيل رسوب ، تخليه بخشي از آب گردش كننده در مدار و جايگزين كردن آن با مقداري آب تازه است كه غلظت مواد معدني در آن كمتر باشد. براي تعيين حداكثر غلظت مواد معدني كه مي تواند بدون ايجاد رسوب در آب موجود باشد بايد آب جبراني كاملاً مورد برسي قرار گيرد. هههدف از برنامه تصفيه ي آب اين است كه تعداد كه تعداد سيك هاي غلظت به حداكثر ممكن رسانده و در اين حال تشكيل رسوب، خوردگي و رشد ميكروبي را به حداقل برساند. مهمترين عاملي كه بايد كنترل شود تشكيل رسوب است كه به طور معمول به دليل اشباع تركيبات كلسيم در آب خنك كن ايجاد مي شود.

خدمات رفاهي شهري پالايشگاه نفت، صنايع شيميايي و بيشتر صنايع ديگر در سيستم هاي تهويه مطبوع خود و يا براسي خنك كردن يك سيال فرايندي در مبدل حرارتي به مقادير زيادي آب خنك كن احتياج دارند. در گذشته، خنك كنندگي با استفاده از از آب هاي موجود در درياچه ها، رودخانه ها و يا سيستم هاي آب شهري نزديك، بر اساس يك روش ((يك بار گذر)) انجام مي گرفت. مشكلاتي مه در اين روش به چشم مي خورد، مسدود شدن مبدل حرارتي با جامدات معلق (گل ولاي) و رشد بيولوژيكي در اين تجهيزات بود. هزينه هاي ناشي از خرابي تجهيزات و محدوديت هاي فزاينده ي سازمان محيط زيست، موجب شد صنايع به تصفيه آب و استفاده مجدد از آن به كمك برج هاي خنك كن روي بياورند. اين امر موجب شد كه نياز صنايع به آب تازه كاهش چشمگيري داشته باشد و مقدار گنداب تشكيل شده ي آنها نيز كاهش يابد.

در يك سيستم خنك كننده ي سيركوله، براي جذب گرمايي كه آب در حين عبور از تجهيزات و فرايندهاي صنعتي دريافت كرده است، آن را از مبدل هاي حرارتي، كانال هاي خنك كننده يا برج هاي خنك كن عبور مي دهند و بعد از خنك شدن دوباره آن را به جهت خنك كردن تجهيزات و فرايند ها به كار مي برند. برج هاي خنك كن سيركوله، خنك كنندگي را از راه تبخير آب و همچنين با انتقال حرارت مستقيم به هوا هنگام عبور مستقيم آن از درون برج ايجاد مي كنند اصول اوليه كاري اين تجهيزات نسبتا واضح است، ولي تجهيزات انتقال حرارت مربوطه به طور گسترده اي به لحاظ قيمت و پيچيدگي باهم متفاوت هستند. به عنوان مثال، در صنايع شميايي ، به دليل طبيعت برخي فرايند ها، معمولا به مواد غير معمول براي ساخت نياز مي باشد. اين مساله موجب مي شود تجهيزات انتقال حرارت بسيار گران شده و نگهداري مناسب آن نيز از اولويت خوبي برخوردار شود.

اغلب مشكلات برج خنك كن ناشي از ناخالصي آب مي باشد. در سيستم هاي خنك كن معمولا سه مشكل وجود دارد:خوردگي، تشكيل رسوب و رشد بيولوژيكي.
 

spow

اخراجی موقت

بررسي عوامل خستگي و انواع شكست در چرخدنده ها



Bevel Gear

چكيده :
در اين مقاله عوامل خستگي و شكست دندانه هاي چرخدنده مورد بررسي قرار گرفته است. عواملي كه باعث خستگي دندانه و در نهايت شكست آن مي شوند عبارتند از : 1ـ شكست حاصل از ممان هاي خمشي 2ـ سايش 3ـ كندگي 4ـ خراش كه هر يك از عوامل خود به چند دسته تقسيم مي شوند.
اين عوامل ممكن است بر اثر نقص هايي باشد كه در خود دندانه وجود دارد يا ممكن است بوسيله عملكرد ساير قطعاتي كه در مجموعه چرخدنده اي بكار رفته اند ايجاد شوند. وقتي با يك دندانه آسيب ديده مواجه مي شويم براحتي نمي توان در مورد علت آسيب قضاوت كرد زيرا اين امر مستلزم تجربه كافي و تحقيقات دقيق مي باشد. با اين حال در اين مقاله سعي شده است بصورت كلي با اين پديده ها آشنا شويم.
واژه هاي كليدي :
سايش، خستگي سطحي، تغيير شكل پلاستيك، شكست

مقدمه :
طراحان چرخدنده هميشه از اين موضوع تعجب مي كنند كه چرا بعضي از چرخدنده ها بهتر و بيشتر از آنچه در فرمول هاي طراحي انتظار مي رفت كار مي كنند در حاليكه تعدادي ديگر حتي وقتي در داخل محدوده طراحي، بارگذاري شده اند ناگهان دچار شكست مي شوند.
به همين دليل لازم است كه عوامل خستگي چرخدنده به دقت بررسي شود.

انجمن چرخدنده سازان آمريكا (AGMA) خستگيهاي چرخدنده را به 5 دسته كلي زير تقسيم مي نمايد:

1ـ سايش (wear)

2ـ خستگي سطحي

3 ـ تغيير شكل پلاستيك (plastic flow)

4ـ شكست دندانه

5ـ شكست هاي خستگي كه 2 يا چند عامل فوق را با هم دارند.

هر يك از اين دسته ها خود به چند نوع و شكل مختلف تقسيم مي شود كه در نهايت يك مهندس كه در زمينه چرخدنده كار مي كند با 18 شكل مختلف از خستگي چرخدنده مواجه مي شود. به همين دليل در مواجه با يك چرخدنده آسيب ديده بايد تلفيقي از علم و هنر آناليز صحيح را بكار برد. اگر آناليز خستگي بطور صحيحي انجام نشود ممكن است علت خستگي چيزي غير از علت اصلي تشخيص داده شود كه در اين صورت طراح را به سمت ساخت يك مجموعه چرخدنده اي بزرگتر از آنچه كه نياز است هدايت مي كند در حاليكه طراحي جديد نيز ممكن است داراي همان عيب قبلي باشد زيرا عامل اصلي تخريب هنوز تصحيح نشده است. به عنوان مثال يك چرخدنده كه در سرعت بالا كار مي كند ممكن است براي ماهها داراي ارتعاش قابل قبولي باشد اما ناگهان علائم ارتعاش با دامنه بالا پديدار مي شود. تحقيقات دقيق روشن مي كند در مدتي كه چرخدنده كار مي كرده دندانه ها دچار سايش شده اند و در نتيجه فاصله بين دندانه ها افزايش يافته كه همين عامل باعث افزايش دامنه ارتعاش چرخدنده شده است. پس مشكل اصلي سايش دندانه ها است نه ارتعاش و ارتعاش بايد به عنوان يك عامل ثانويه در نظر گرفته شود. نكته مهم ديگري كه بايد در نظر گرفته شود اين است كه گاهي طراحي چرخدنده صحيح است ولي چرخدنده بر اثر رفتار ساير قطعاتي كه در مجموعه چرخدنده اي شركت دارند يا ساير عوامل (محيط، خطاي نصب و استقرار و …) دچار خستگي ناخواسته مي شود. به عنوان مثال فرض كنيد محور يك توربين توسط يك اتصال كوپلينگ به محور پينيون وصل شده است، در صورتيكه اين اتصال در انتقال نيرو داراي خطاي زيادي باشد يعني نيرو را طوري انتقال دهد كه نيروهاي شعاعي و محوري بيشتر از آنچه در طراحي در نظر گرفته شده به پينيون وارد شود در آنصورت پينيون و ياتاقان محور آن به سرعت دچار سايش يا حتي شكست مي شوند. بنابراين راه حل طراحي مجدد پينيون يا تعويض ياتاقان محور آن نيست بلكه بايد در وضعيت اتصال (coupling) تجديد نظر كرد.

با اين مقدمه به سراغ انواع خستگي هايي كه در يك چرخدنده رخ مي دهد مي رويم. تذكر اين نكته ضروري است كه منظور از شكست خستگي در يك چرخدنده، گسيختگي (جدا شدن) دندانه نمي باشد بلكه هر عاملي كه باعث شود چرخدنده از شرايط كاري مطلوب خارج گردد به عنوان يك نوع شكست خستگي محسوب مي شوند. لذا سايش نيز براي چرخدنده نوعي شكست خستگي محسوب مي شود.

1ـ سايش (wear) :
از نقطه نظر يك مهندس چرخدنده، سايش عبارتست از زدوده شدن يكنواخت يا غير يكنواخت فلز از روي سطح دندانه.
علل اصلي سايش دندانه‌، تماس فلز به علت نامناسب بودن ضخامت لايه روغن، ذرات ساينده موجود در روغن كه با شكستن لايه روغن باعث سايش سريع يا ايجاد خراش مي گردند و سايش شيميايي به علت تركيب روغن و مواد افزوده شده است به آن مي باشند. سايش باعث كم شدن ضخامت دندانه و تغيير شكل پروفيل آن مي گردد كه در نتيجه شكل پروفيل دندانه از حالت مطلوب (مثلا منحني اينولوت) خارج شده و خواص آن از بين مي رود. سايش بخصوص در چرخدنده هايي كه بايد براي مدت نامحدود با سرعت بالا كار كنند يك پديده بسيار مهم است. البته سايش هميشه يك عامل منفي نيست بلكه وجود مقدار بسيار ظريفي سايش باعث اصلاح دندانه هاي درگير با هم و هماهنگ شدن آنها مي شود. پوليش كــــردن (polishing) كه يك نوع عمليات پرداخت بسيار ظريف است نيز به معناي سائيدن قطعه به مقدار بسيار كمي مي باشد.

در شكل 1 مراحل رشد سايش در دندانه هاي چرخدنده اي با سختي قابل ماشينكاري نشان داده شده است. در مرحله اول سايش در حد پرداخت دندانه ها مي باشد كه كمترين مقدار آن در حدود خط گام رخ مي دهد. علاوه بر آن كندگيهاي ريزي در نزديك ريشه دندانه مشاهده مي شود. در مرحله دوم در سردندانه تغيير شكل پلاستيك كه البته مقدار آن بسيار كوچك است آغاز مي گردد. علاوه بر اينكه سايش و كندگي در نزديك ريشه بيشتر شده است و اين روند تا مرحله چهارم ادامه مي يابد. همانطور كه مشاهده مي كنيد در تمامي اين مراحل منطقه نزديك خط گام از كمترين سايش برخوردار است. (زيرا از نظر تئوري در نقطه گام غلتش محض و از نظر عملي مقدار ناچيزي لغزش وجود دارد) به همين علت در مرحله چهارم، منطقه خط گام بيشتر بار را انتقال خواهد داد كه اين عمل باعث افزايش تنش هاي تماسي در منطقه خط گام و اغلب منجر به كندگي اين ناحيه مي گردد. در نتيجه چرخدنده دچار شكست شده و از حالت كاري مطلوب خارج خواهد شد. كاهش بار انتقالي و افزايش كيفيت روغنكاري براي بهبود اين وضعيت بسيار مفيد خواهد بود. توجه كنيد كه سايش را مي توان مقدمه ظهور ساير شكست ها در دندانه دانست. بر اثر سائيده شدن دندانه ضخامت آن كاهش مي يابد. لذا علاوه بر كاهش مقاومت خمشي، در آغاز درگيري ضربه زيادي بر دندانه وارد مي شود كه ممكن است باعث شكست دندانه شود. علاوه بر آن تغيير شكل پروفيل دندانه باعث تمركز تنش در بعضي نقاط روي سطح دندانه مي شود كه ممكن است باعث كندگي و يا شكست دندانه شود. در صورتي كه علت سايش وجود مواد خارجي مانند براده هاي ماشين كاري ، باقيمانده هاي سنگزني و يا موادي كه به طريقي وارد فضاي كاري چرخدنده ، شده اند باشد به اين سايش، اصطكاك ساينده (abrasive wear) گويند. اما در صورتي كه عامل سايش مواد شيميايي موجود در روانساز يا مواد آلوده كننده اي مانند آب، نمك رطوبت محيطي و … باشد به آن اصطكاك خورنده (corrosvie wear) گويند. اما شايد مهمترين سايش، سايشي باشد كه ناشي از شكسته شدن موضعي لايه روغن به علت حرارت بيش از حد، مي باشد كه باعث تماس فلز با فلز و اصطكاك چسبنده به شكل يك جوش و يا پارگي و يا خراش مي شود كه اصطلاحا به اين نوع سايش scuffing گويند كه خود به چند نوع نقسيم مي شود. بطور كلي مستعدترين مكان ها براي اين نوع سايش، سر و ته دندانه مي باشد. (براي توضيحات بيشتر به منبع دوم مراجعه نمائيد.) از روش هاي جلو گيري از اين نوع سايش مي توان افزايش ويسكوزيته روغن، افزايش سختي چرخدنده، پرداخت خوب سطح دندانه و در بعضي مواقع اصلاح پروفيل دندانه و تاج گذاري دندانه (crowing) كه در اين روش وسط دندانه به صورت يك برآمدگي، بالا مي آيد و بدين ترتيب بيشتر بار توسط اين قسمت منتقل مي شود را نام برد.

2ـ تغيير شكل پلاستيك (plastic flow) :
اين نوع شكست وقتي حاصل مي شود كه سطوح تماس تسليم شده و تحت بار سنگين تغيير شكل دهند. معمولا اين نوع شكست در نوك و در دو انتهاي (طرفين) دندانه رخ مي دهد. اما در مواقعي كه نيروهاي لغزشي در سطح دندانه زياد باشند تغيير شكل در سراسر دندانه مشاهده مي شود. بطوريكه سطح دندانه بصورت موج موج در مي آيد. (به اين نوع تغيير شكل پلاستيك rippling گويند) براي جلو گيري از تغيير شكل دندانه مي توان بار اعمالي را كم كرده يا بر سختي دندانه افزود. نوع ديگري از تغيير شكل پلاستيك كه به علت سرعت لغزشي بالا در حلزون ها و چرخ حلزون ها و چرخدنده هاي هيپوئيد مشاهده مي شود شيار شيار شدن سطح دندانه است كه به اين نوع تغيير شكل Ridging (شيار شيار شدن يا چروك شدن) گويند.

3ـ شكست دندانه :
شكست دندانه چرخدنده، شكستي است كه در آن تمام يا قسمت قابل توجهي از يك دندانه بر اثر بارگذاري بيش از حد، ضربه يا اغلب بر اثر تنش هاي خمشي مكرري كه بيش از مقدار حد دوام ماده چرخدنده است، از چرخدنده جدا مي شود. اين نوع از شكست حاصل خستگي خمشي دندانه تحت بار خمشي وارد بر آن مي باشد.

در بررسي شكست دندانه بررسي چند موضوع ضروري است :

1ـ3ـ نقطه كانوني :
نقطه كانوني، نقطه اي است كه شكست از آنجا آغاز مي شود. اين نقطه ممكن است يك شيار يا پارگي در ناحيه منحني ريشه (Root fillet) ، يكي از تركهايي كه بر اثرعمليات حرارتي در سطح قطعه بوجود مي آيد و يا نقطه اتصال بين منحني ريشه دندانه به منحني پروفيل دندانه (اين نقطه از نظر تئوري ضعيف ترين نقطه در مقابل تنش هاي خمشي است) باشد.

2ـ3ـ خورندگي مخرب (Fretting corrosion) :
در طول زماني كه ترك در حال رشد است روغن به درون آن نفوذ كرده و هر گاه دندانه وارد درگيري مي شود فشار هيدروليكي زيادي توليد مي كند كه اين فشار باعث تخريب و اشاعه ترك به زير سطح دندانه چرخدنده مي شود.

3ـ3ـ شكست براثر بارگذاري بيش از حد مجاز (over load Breakage) :
اگر شكست دندانه به علت بارگذاري بيش از حد مجاز يا بر اثر ضربه رخ داده باشد معمولا سطح شكسته شده به صورت ريش ريش است، حتي اگر دندانه كاملا سخت شده باشد. با اين حال سطح شكست شبيه رشته هاي يك ماده پلاستيكي است كه جدا جدا پيچانده شده اند.

4ـ3ـ موقعيت شكست :
معمولا شكست دندانه هاي چرخدنده از ناحيه منحني ريشه بخصوص در منطقه پيوستن منحني ريشه به منحني پروفيل دندانه، آغاز مي شود. (يك تير يك سردرگير در تكيه گاه داراي ضعيف ترين مقطع است). گاهي اوقات كندگي خط گام به قدري شديد است كه باعث شروع شكست دندانه از خط گام مي شود. گاهي اوقات نيز انطباق تداخلي ناخواسته اي كه بين دندانه هاي درگير رخ مي دهد يا تنش هاي پسماند عمليات حرارتي باعث مي شود كه شكست در ناحيه ريشه در وسط دو دندانه آغاز شود. در برخي موارد نيز نقص هاي ساختاري كه در عمليات آهنگري (forging) قطعه ايجاد شده باعث مي شود كه دندانه از نقطه اي غير قابل پيش بيني بشكند.

4ـ كندگي در دندانه هاي چرخدنده (pitting) :
كندگي عبارتست از شكست خستگي حاصل از تنش هاي تماسي (hertzian stresses) كه باعث مي شود قسمت هايي از سطح دندانه چرخدنده بصورت حفره كنده شود. بر اساس شدت خسارتي كه به سطح خورده است مي توان كندگي را به سه دسته تقسيم كرد:

1ـ4 ـ كندگي اوليه :
در اين كندگي، قطر حفره ها بسيار كوچك و در حد 0.4 تا 0.8 ميليمتر مي باشد. اين كندگي در نقاطي رخ مي دهد كه تنش از حد مجاز تجاوز نمايد و بدين وسيله تمايل دارد تا با كندن اين نقاط از روي سطح، بار را دوباره پخش نمايد. بدين ترتيب با پخش هموارتر بار، عمل كندگي كاهش يافته و در نهايت متوقف مي شود. به همين دليل به اين نوع كندگي، كندگي تصحيح كننده (corrective pitting) نيز گويند.

2ـ4 ـ كندگي مخرب (destructive pitting) :
اين نوع كندگي نسبت به كندگي اوليه شديدتر و قطر حفره هاي كندگي نيز بزرگتر است و وقتي بوجود مي آيد كه تنش سطحي در مقايسه با حد دوام ماده بزرگ باشد. در اين نوع كندگي در صورتي كه بار كاهش نيابد كندگي بطور پيوسته ادامه مي يابد تا جائي كه چرخدنده بايد از سرويس خارج شود.

3ـ4 ـ كندگي خرد كننده (spalling) :
اين نوع كندگي حالت شديدتر كندگي مخرب است كه كندگي ها داراي قطر بزرگتري بوده و ناحيه قابل توجهي را در برمي گيرد. كندگي خرد كننده معمولا پس از كندگي مخرب روي مي دهد و علت آن خستگي سطحي سطوح باقيمانده (سطوح كنده نشده توسط كندگي مخرب)‌ و يا راه يافتن حفره هاي حاصل از كندگيهاي مخرب به يكديگر مي باشد.

وقوع كندگي مخرب يا خرد كننده حاكي از عدم تحمل تنش هاي تماسي توسط سطح مي باشد در بعضي موارد افزايش سختي ماده يا استفاده از موادي كه كربوره يا نيتريده شده اند به جاي مواد فعلي مي تواند اين مشكل را حل كند در غير اين صورت يك طراحي مجدد بايد انجام شود كه در آن ضخامت دندانه يا فاصله مراكز دو چرخدنده افزايش مي يابد (افزايش فاصله مراكز بار انتقالي را كاهش مي دهد)در درگيري ميان چرخدنده و پينيون، پينيون از استعداد بيشتري براي كندگي برخوردار است زيرا معمولا ‌به علت كوچكتر بودن نسبت به چرخدنده، تعداد دور بيشتري مي زند و در نتيجه بيشتر در معرض تنش هاي سطحي قرار مي گيرد. ثانيا در صورتي كه پينيون به عنوان راننده (driver) بكار رود (كه اغلب چنين است) جهت نيروهاي لغزش از خط گام به سمت طرفين خط گام مي باشد كه اين عامل باعث مي شود ماده در ناحيه خط گام تحت كشش قرار گرفته و آماده ترك شود. (براي توضيحات بيشتر به منبع دوم مراجعه فرمائيد)

نتيجه :
با توجه به مباحث فوق،‌ نمودار تجربي نشان داده شده در شكل 6 را به عنوان حاصل بحث مورد توجه قرار دهيم. اين نمودار حاصل آزمايش و انجام تستهاي تجربي بر روي يك چرخدنده نوعي مي باشد كه نتايج آن براي ساير چرخدنده ها نيز قابل تعميم است. در اين نمودار كه برحسب گشتاور و سرعت خطي گام رسم شده 5 ناحيه مختلف را مشاهده مي كنيد. در ناحيه اول، از آنجا كه سرعت چرخدنده آن قدر زياد نيست كه بتواند لايه روغن هيدرو ديناميكي را تشكيل دهد. لذا اين ناحيه اغلب با خستگي سايشي مواجه مي شود. در ناحيه سوم با اينكه سرعت براي تشكيل يك لايه روغن مناسب است اما سرعت به قدري بالا است كه حرارت ناشي از آن باعث شكسته شدن لايه روغن شده و در نتيجه پديده خراش (scoring) يا جوش خوردگي رخ مي دهد. در ناحيه چهارم كندگي رخ مي دهد. اين پديده از آنجا كه يك نوع شكست خستگي است لذا وابسته به زمان و بار اعمالي مي باشد و در صورتي كه نتش هاي تماسي بيش از حد دوام ماده باشد در هر سرعتي بالاخره رخ خواهد داد. لذا اين ناحيه در تمامي نواحي بالاي حد دوام مشاهده مي شود. در ناحيه پنجم دندانه بيشترين استعداد را براي شكسته شدن دارد. علت اصلي شكست در اين ناحيه ضعيف شدن سطح مقطع دندانه بر اثر سايش، تغيير شكل پروفيل دندانه و تمركز تنش در برخي نقاط بخصوص در ناحيه‏ ريشه بر اثر سايش يا شوك و ضربه وارد به دندانه بر اثر سايش و بالاخره خستگي خمشي مي باشد. بنابراين طراح بايد سعي كند براي يك عمر نامحدود، شرايط كاري چرخدنده را در ناحيه دوم قرار دهد.

منابع :
1_ Gear Hand book–Darle W.Dudley–Mc Graw–Hill–1993 (chapter 12)
2_ Practical Gear Hand book–Darle W. Dudley–Mc Graw–Hill 1983 (chapter 7)
3_ Testing Automotive Materials and components–D. n. H. Wright 1993 (chapters 2,3,7,8,9(

منبع :
www.me-es.com
 
Similar threads
بالا