مقاله شماره39: آينده سراميك از ديدگاه رئيس انجمن سراميك آمريكا

m4material

مدیر تالار مهندسی مواد و متالورژی
مدیر تالار
آيندة سراميك از ديدگاه رئيس انجمن سراميك آمريكا

نويسنده: حسين صالحي وزيري


شناخت آيندة تكنولوژي, يكي از مباحث مهم در مديريت كلان تكنولوژي است كه كمك زيادي به برنامه‌ريزي­هاي آينده مي­كند. دكتر هاوس­من رئيس انجمن سراميك آمريكا، در متن زير به ترسيم آيندة تكنولوژي سراميك پرداخته است:
آينده سراميك چيست؟

به راستي اين پرسشي است كه همگان مي­پرسند. چه كسي 50 سال پيش مي­توانست تاثير كامپيوتر­ها را پيش‌بيني كند؟ كامپيوتر­هاي شخصي بر نحوه تجارت، طريقه ارتباطات و زندگي شخصي ما تاثير گذاشته­اند؛ بر فرآيند توليد در تمامي مسير آن، از مواد اوليه و فرمولاسيون گرفته تا خشك­كن­هاي پيچيده و كنترل كوره و همچنين بر روش­ها و تكنيك­هاي علمي مورد استفاده اثر دارند. در تحقيقات نيز كامپيوتر­ها به همراه اينترنت روش­هاي جديد و جالبي براي دستيابي و پردازش اطلاعات به وجود آورد­­­ه­اند.

ما مي­توانيم مطمئن باشيم كه آينده تكنولوژي مواد مهيج خواهد بود و در تكنولوژي سراميك، پيشرفت­هاي همه‌جانبه­اي صورت خواهد گرفت. اين پيشرفت­ها مي­توانند در زمينه بهبود مواد اوليه و روش­هاي جديد و بهبوديافته پردازش آن­ها و تكنيك­هاي تعيين ويژگي­ها و آزمايشات باشند. اين به معناي دستيابي به مواد سراميكي جديد با خواص و كاربردهاي منحصر به فرد مي­باشد؛ خواصي كه در حال حاضر ناممكن به نظر مي­رسند.

در زير زمينه­هايي آورده شده­اند كه ما مطمئنيم در آينده نزديك راجع به پيشرفت­هاي آن­ها بسيار خواهيم شنيد.
1- نانوتكنولوژي و سراميك
به نظر مي­رسد كه نانوتكنولوژي در سراميك­هاي پيشرفته آينده نقش داشته باشد. در طي دو دهة اخير، نانومواد باعث انفجاري در زمينه­هاي علمي و صنعتي شده­ است و اين قابليت را دارد كه انقلاب ديگري در مواد ايجاد ­كند. توجه به نانومواد به دليل ويژگي­هاي منحصر به فردي است كه با اين مواد مي­توان به ­آن­ها دست يافت و همچنين كاربردهاي جالبي كه از اين ويژگي­ها به دست مي­آيند. تقويت خواص الكتريكي، مغناطيسي و نوري در مورد اين مواد گزارش شده است.

اين ويژگي­هاي بهبوديافته در مقايسه با ويژگي­هاي مواد سنتي، دري را به روي كاربردهاي بسياري مي­گشايند. برخي از كاربردهاي فعلي اين مواد در ساينده­ها، كاتاليست­ها، پوشش­ها، ضبط­كننده­هاي مغناطيسي، غشا­ها، ضدآفتاب­ها، چسب­ها، عوامل كنتراست MRI و تقويت كننده‌ها و پركننده‌ها در مواد كامپوزيتي مي­باشد.

به احتمال زياد نانومواد كاربردهايي در بيومواد، ابزار برش، حسگرهاي گاز، پيل­هاي سوختي اكسيد جامد، سراميك­هاي ساختاري، لايه­هاي ضخيم، پوشش­هاي ضدسايش و فيلم­هاي عملگر شفاف خواهند داشت.

توجه اخير به اين زمينه، در گردهمايي سالانه انجمن سراميك آمريكا در سال 2001 مشهود بود كه در آن سمپوزيوم، 79 مقاله به اين تكنولوژي اختصاص داده شده بود. به دليل كارآيي­هاي نانوتكنولوژي، مؤسسه علوم ملي و انجمن تكنولوژي آمريكا، سال گذشته مؤسسه نانوتكنولوژي ملي را تأسيس كردند. اين مؤسسه 495 ميليون دلار از بودجه سال 2001 را به خود اختصاص داد.

شركت­هاي بسياري در حال تلاش هستند تا محصولات نانوساختاري را به طور تجاري به بازارهاي جديد عرضه كنند. در حال حاضر كشور­هاي آمريكا ، ژاپن و آلمان براي تجاري كردن نانوتكنولوژي فعاليت مي­كنند. همچنين 50 شركت­ آمريكايي نيز در حال تلاش براي توسعه و توليد مواد نانوساختاري هستند.

2- بيوسراميك­ها
بيوسراميك­ها كاربردهاي بسياري در بدن از جمله لگن، شانه، زانو، تعمير استخوان­هاي آسيب ديده، درمان­ بيماري­ها و كاشت­هاي دنداني خواهند داشت. اروپا كه سيستم قانوني دولت آن كمتر محافظه­كار است، تحقيقات كلينيكي بيشتري در اين زمينه در مقايسه با آمريكا انجام داده است. در كشور آمريكا توجه بسياري به بيوسراميك­ها در دهة اخير شده است. به عنوان نمونه FDA اخيراً يك كاشت زانويي با پوشش سراميكي را به جاي كاشت­هاي زانويي كبالت- كرومي معرفي كرده است.

در يك پيشرفت جديد ديگر، مطالعات كلينيكي بر روي زانوي سراميكي ديگري انجام گرفته­ است كه اين زانو مي­تواند كاملاً جايگزين زانوي انسان شود. اين زانوي سراميكي از اكسيد زيركونيم ساخته شده است. انگيزه ساخت زانوي سراميكي، به دليل سايش پليمر­ها به هنگامي است كه فلزات سنتي مورد استفاده در زانوي مصنوعي با پلي‌اتيلن تيبيال، مفصل­دار مي­شوند. با شبيه­سازي­هاي آزمايشگاهي نشان داده شده است كه زانوي زيركونيايي، 25 درصد سايش كمتري از زانوهاي فلز/ پلي اتيلن دارد.

در حال حاضر ميكروسفرهاي شيشه­اي راديو اكتيو در كانادا و هنگ­كنگ براي درمان سرطان كبد استفاده مي­شوند. اين روش مزاياي بسيار مهمي به پزشكان در مبارزه با سرطان مي­دهد، به اين صورت كه تشعشع را مستقيماً به درون تومور مي­رسانند. اين نوع تشعشع بين پنج تا هفت مرتبه قوي­تر از تشعشاتي است كه از بيرون تابانده مي­شوند و هيچ نوع اثرات جانبي يا ناراحتي ندارد. اين روش به زودي در آمريكا ، اروپا و چين نيز پذيرفته خواهد شد. كاربرد اين ميكروسفرهاي شيشه­اي براي درمان سرطان كبد و تومورهاي مغزي نيز مورد مطالعه است و نوع تضعيف شده آن براي درمان آرتريت روماتوييد مورد ارزيابي قرار دارد.

3- پيل­هاي سوختي و سراميك
پيل­هاي سوختي، تكنولوژي تميز با آلودگي پايين و راندمان بالا براي توليد الكتروشيميايي الكتريسته از سوخت هيدروكربني مي­باشند. اخيراً پيل­هاي سوختي توجه بسيار زيادي را در جامعه فني به خود جلب كرده­اند. همچنين تمايل بسياري به سرمايه­گذاري روي آن­ها وجود دارد. گزارش شده است كه در سال 2000، پيل­هاي سوختي از لحاظ شهرت در مرتبه دوم قرار داشته­اند.

كارآيي پيل­هاي سوختي در پايگاه­هاي توليد نيروي (برق)، حمل و نقل و توليد برق ارتش مي­باشد. دو پيل سوختي مختلف كه بررسي شده­اند، پيل­هاي سوختي سراميكي دما بالا (كه به پيل­هاي سوختي اكسيد جامد يا SOFC معروفند) و پيل­هاي سوختي الكتروليت پليمري (PEM) مي­باشند. اگر چه PEM ها معمولاً بهترين كانديد براي كاربردهاي خودروسازي هستند، SOFCها نسبت بهPEMها برتري­­هايي دارند. از جمله برتري‌هاي آنها، قابليت استفاده از مونوكسيدكربن به همراه هيدرژن به عنوان سوخت است. همچنين به دليل دماي كاركرد بالاتر sofcها (C 10000-800)، سوخت­هاي هيدروكربني مي­توانند بر روي پيل يا درون آن اصلاح شوند، بدون اينكه لازم باشد از اصلاح كننده­هاي جداگانه استفاده كنيم. SOFCها نياز به كاتاليست­هاي گرانقيمت از جنس فلزات نجيب ندارند. مزاياي ديگر SOFCها راندمان بالا (60 درصد در كاربردهاي ثابت و 40 درصد در كاربردهاي متحرك)، قابليت اطمينان، تشكيل واحد و ميزان خروج بسيار پايين Nox و Sox مي­باشد.

دو طراحي فعلي براي SOFCها، دو نوع تيوپي و صفحه­اي مي­باشند كه تحت تحقيق و بررسي قرار دارند. طرح صفحه­اي برتري­هايي مانند دانسيته و قدرت بالاتر، دانسيته نيروي حجمي بالاتر و هزينه پايين­تر توليد دارد. عيب طرح صفحه­اي، نياز آن به آب­بندي­هاي دما بالا است. موارد ديگري كه هنوز براي استفاده گسترده SOFC ها بايد با آنها مقابله كنيم، هزينه توليد، زمان شروع به كار، سيكل‌پذيري حرارتي و مقاومت در برابر شوك حرارتي مي­باشند.

4- كاربردهاي ميكروالكترونيكي سراميك­ها
در آينده، سراميك­ها باز هم در كاربردهاي ميكروالكترونيكي نقش خواهند داشت. مزاياي پايه­هاي سراميكي درون اتصالي مانند ثبات خواص الكتريكي، نشر حرارتي بالا، قدرت تكنيك بالا، خطوط هدايت كاملاً واضح و قابليت سوار كردن اجزاي كنش­پذير، آنها را براي استفاده در قطعات الكترونيكي ايده­آل مي­سازد. برخي از كاربردهاي اين مواد در تلفن­هاي همراه، پيجرها، سيستم­هاي ترمز ضد قفل شونده، كنترل‌كننده­هاي موتور خودرو، باتري قلب و دوربين­هاي ديجيتالي مي­باشد.

در حال حاضر تكنولوژي پايه­هاي سراميكي درون‌اتصالي گوناگون به صورت زير تقسيم بندي شده است:

- پايه­ها

- تكنولوژي فيلم­هاي ضخيم

- سراميك­هاي هم پخت شده دما بالا و دما پايين (HTCC، LTCC)

- تكنولوژي فيلم­هاي نازك

- انواع تكنولوژي­هاي اعمال مس روي سراميك.

در كاربردهاي ديجيتالي، هنگامي كه اندازه تراشه­ها كوچكتر مي­شود، با سرعت­هاي بيشتري عمل مي­كنند و نشر حرارتي بيشتري دارند. اين تكنولوژي با استفاده از موادي با ثابت دي­الكتريك كمتر پاسخ داده است و قابليت نشر حرارتي را بهبود مي­بخشد. نياز به بهبود عمليات آنالوگ و توجه به نيازمندي­هاي كاربردهاي بي سيم/ فركانس راديويي ما را به سمت مواد عايق بهبود يافته با اتلاف دي­الكتريك پايين(Qبالا) هدايت كرده است.

تكنولوژي­هاي پايه­هاي سراميكي درون‌اتصالي، زمان رسيدن به بازار را كاهش مي­دهد كه از اهميت شديدي برخوردار است. در آينده، افزايش بيشتر كارآيي و تراكم بيشتر اجزا نيز مورد نياز خواهد بود. اين امر توسط پيشرفت قدرت تفكيك و ساختارهاي چندلايه­اي درون‌اتصالي با آرايش سري يا موازي به دست مي­آيد. هنگامي كه بيشتر تكنولوژي درون‌اتصالي مناسب در مرحله تعريف شده باشد، اين كارايي افزايش يافته و باعث كاهش هزينه­ها مي­گردد.

5- كامپوزيت­هاي زمينه سراميكي
ناحيه ديگر كاربرد آتي سراميك­ها، در كامپوزيت­هاي سراميكي (CMC) مي­باشد. صنعت نياز شديدي به موادي دارد كه سبك، محكم و مقاوم در برابر خوردگي مكانيكي باشند و قابليت عملكرد در محيط­هاي دما بالا را داشته باشند. دفتر تكنولوژي­هاي صنعتي وزارت انرژي آمريكا، برنامه­اي را آغاز كرده است كه برنامه كامپوزيت­هاي داراي فيبرهاي سراميكي پيوسته(CFCC) ناميده مي­شود. هدف از انجام اين كار مشترك ميان صنعت، آزمايشگاه­هاي ملي، دانشگاه­ها و دولت، ارتقاي روش­هاي پردازش مواد كامپوزيتي سراميكي قابل اعتماد و ارزان مي­باشد.

كارايي اين مواد در مشعل­هاي تشعشعي متخلخل، *****هاي گاز داغ، مشعل­هاي تشعشعي تيوپي شكل و جداره­هاي توربين­هاي گازي احتراقي مورد بررسي قرار گرفته است. CFCCهاي به كار رفته در اين كاربردها مزاياي مهمي در زمينه انرژي، محيط زيست و اقتصاد فراهم خواهند كرد.

خيلي­ها عقيده دارند كه CMCها علاوه بر كاربردهاي صنعتي، در نسل بعدي سفينه­هاي فضايي و وسايل نقليه فضايي نيز بسيار ضروري خواهند بود. مواد مصرفي فعلي در محيط­هاي احتراقي معمولاً فلزات شديداً سرمايش يافته يا فلزات ديرگداز مي­باشند. CMCها، جايگزين سبكي براي خيلي از مواد مصرفي امروزي مي­باشند. برخي موانعي كه بايد براي كاربرد گسترده CMCها بر آن غلبه كنيم، هزينه الياف (معمولاً الياف غير اكسيدي) و هزينه توليد مي­باشند (توليد سريع­تر و هزينه كمتر).

6- ابر رسانا‌هاي دما بالا
اگر چه از هنگام كشف ابر رسانا‌هاي دما بالا(HTS) در سال 1986، پيشرفت در اين زمينه رشد آهسته­تري نسبت به قبل داشته است. در پنج سال اخير رشدي در زمينه بهبود خواص اين مواد ديده شده و توسعه آنها گزارش شده است. بر طبق يك احتمال انتظار مي­رود كه بازار HTS در سال 2002 به 62 ميليون دلار برسد.

HTS مي­تواند سرعت ارتباطات را ترقي بخشد. با كنار هم قرار دادن تكنولوژي ديجيتال ابر رسانا­ها و فيبر نوري، ظرفيت و كارآيي آينده شبكه­ها با سرعت فوق‌العاده بالا از طريق الكترونيك­هاي نيمه­هادي سرمايش­يافته افزايش خواهد يافت و ارتباطات بلادرنگ و كاربردهاي چندرسانا­اي امكان پذير خواهند شد.

نياز به الكتريسيته، پيوسته افزايش خواهد يافت و انتظار مي­رود كه تا سال 2030 دو برابر شود. احتمالاً استفاده از مواد HTS به منظور افزايش راندمان و هزينه­هاي كمتر حياتي خواهد شد؛ چون سيم­هاي HTS، الكتريسيته را تقريباً بدون هيچ گونه اتلافي عبور مي­دهند. در صنعت برق مي­توان از چنين سيم­­هايي براي توليد سيم­پيچ­ها، هادي­ها، ماشين­ها و وسايل برقي با راندمان بسيار بالا استفاده كرد. استفاده از HTS در اين كاربردها مي­تواند ميلياردها دلار در هزينه انرژي صرفه­جويي كند و با كاهش ميزان سوخت در توليد الكتريسته به محيط زيست كمك كند. در آينده مدارهايي كه از مواد ابر رساناي دما بالا استفاده مي­كنند، سرعت پردازش كامپيوترها را ترقي داده و اتلاف مقاومتي را در كنترل‌كننده­هاي موتور كاهش مي­دهند.

محققين دانشگاه Aoyama Gakuin توكيوي ژاپن اخيراً كشف كرده­اند كه بوريد منيزيم در دماي k 39 ابررسانا است. با وجود اينكه اين دما در HTS دماي پاييني است، از دمايي كه بيشتر در تركيبات نسبتاً ساده و موجود مشاهده شده بيشتر است و تقريباً دو برابر هر مادة ابررساناي فلزي است. بايد ديد كه مواد جديدي كه كشف خواهند شد، چه موادي خواهند بود و دماي بحراني آنها به چه حدي مي­رسد.

7- زمينه­هاي ديگر كاربرد سراميك
تكنولوژي­­هاي ديگري كه سراميك­ها در آينده در آنها نقش خواهند داشت، دستگاه­هاي ميكروالكترومكانيكي(MEMS), سيستم­هاي هوشمند با استفاده از مواد سراميكي( يعني پيزو سراميك­ها) و الگوسازي­هاي اوليه سريع خواهند بود. در زمينه MEMS, سراميك­هاي چگالي پايين با استحكام مكانيكي بالا، خنثايي شيميايي، مقاومت در برابر خوردگي مكانيكي و ضريب اصطكاك كم بسيار مناسب هستند.

اگر بخواهيم بيشتر راجع به آينده فكر كنيم، احتمال وجود كامپيوترهاي سريعتري مي­رود كه بر پايه سيستم دوتايي صفر و يك نيستند. اين كامپيوترها در سطح اتمي عمل خواهند كرد و به جاي المان­هاي نيمه­هادي، داراي نقاط كوانتومي به عنوان واحد مدارشان خواهند بود.

در زمينه آموزش علم سراميك و مهندسي آن، نمي­توان آينده را به راحتي پيش­بيني كرد، به خصوص هنگامي كه به روند تكامل آن از صد سال پيش مي­نگريم. اميدواريم كه مهندسي سراميك تنها در برنامه­ريزي­هاي موادي ادغام نشود. هنگامي كه مي­بينيم مواد سراميكي چه نقشي دارند و در آينده چگونه نقش خواهند داشت، بدون شك از دست دادن مهندسي سراميك موجب زيان صنعت و جامعه خواهد بود. امروزه آموزش مكاتبه­اي در حال اجرا است و بي­شك در آينده در هر نظامي نقش خواهد داشت. واحدهاي درسي بسياري از مدارس حرفه­اي و دانشگاه­ها از طريق اينترنت قابل دسترسي هستند. حتي مؤسسه تكنولوژي ماساچوست اعلام كرده است كه اين مدرسه مواد درسي لازم براي همه واحدهاي درسي را به طور رايگان از طريق اينترنت ارايه خواهد كرد. اين يك برنامه ده‌ساله است و اين موسسه سالي 7.5 تا 10 ميليون دلار خرج خواهد كرد تا به اين هدف دست يابد. به طور يقين، اين روند شتاب پيدا خواهد كرد.

انجمن سراميك آمريكا مفتخر است كه در بسياري از پيشرفت­هاي تكنولوژي سراميك به مدت بيش از 100 سال نقش داشته است. بخشي از شبكه جهاني اين انجمن به آينده سراميك­ها اختصاص داده شده است و برنامه­ريزي­هاي چندگانه­اي براي صنعت(مصرف كننده نهايي سراميك)، دانش­آموزان پيش دانشگاهي، جامعه و مطبوعات در دست اجرا دارد
 

Similar threads

بالا