(ZPE) اثر کازیمیر و انرژی نقطه ی صفر

mahdi.adelinasab

کاربر بیش فعال
کاربر ممتاز
ابتدا توضیح جامعی در مورد اثر کازیمیر (Casimir Effect) می دهیم. این اثر شامل نیرویی می شود که نه می توان آن را اثر بار و نه گرانش و رد و بدل کردن ذرات بین دو جسم دانست. آزمایشات کازیمیر نشان می داد که این نیرو مربوط به تشدید (Resonance) میادین انرژی در میان فضای دو جسم می باشد. از آنجاییکه اعمال این نیرو دارای اثبات ریاضی است محققان این نیرو را به ذراتی مجازی در فضای بین دو جرم نسبت دادند. اما با این وجود مشکلات زیادی در آزمایش ها بود. برای مثال محققان تا به حال متوجه نشده اند چرا این نیرو در بین دو جرم تنها هنگامی اعمال می شود که دو جرم بسیار به هم نزدیک هستند!این نیرو در ذرات بسیار کوچک میکرونی رسانا نیروی غالب به شمار می رود زیرا در این شرایط نیروی بار بین ذرات بسیار کم خواهد بود. این مورد در آزمایش کازیمیر در سال ۱۹۴۸ به طور واضح دیده شد. اما سوال دیگری بعد از آن بوجود آمد که چرا این اثر تنها در خلا نمایان می شود؟ سال ۱۹۴۸ هندریک کازیمیر (Hendrik B.G. Casimir) فیزیکدان هلندی در آزمایشگاه فیلیپس (Philips) دو صفحه ی فلزی بدون بار را در خلا موازی یکدیگر قرار داد. نیروی مشاهده شده در این آزمایش (بین دو صفحه) تقریبا ۱۵ درصد آن چیزی بود که او در معادلات خود پیش بینی می کرد!بعد از این آزمایش دانشمندان نیز دریافتند این نیرو همان نیرویی است که در بین اتم های بدون بار وجود دارد. نیرویی که آن را واندروالس (Van Der Waals) نامیده بودند.
"
آزمایش کازیمیر״: نیروی بوجود آمده از قرار دادن دو صفحه ی موازی بدون بار در خلا"خود کازیمیر دلیل این موضوع را متوجه نشد که چرا این صفحات تنها در خلا بین خود نیرو رد و بدل می کنند ولی آن را به مقداری به نام ارزش انتظاری (فرضی) خلا مرتبط کرد و بیان نمود از آنجا که مکان های دیگر این ارزش را ندارند پس در آنجا چنین واکنشی صورت نخواهد گرفت. برای مثال این مقدار در مکانیک هگز بوزون ۲۶ گیگا الکترون ولت می باشد. بعد از این فرضیه به سرعت فرضیه ی دیگری با نام انرژی نقطه ی صفر (ZPE) یا انرژی خلا بیان شد. دانشمندان در صدد بودند تا از مشاهداتی که داشته اند دریابند که آیا انرژی و اثرات خلا دارای یک ثابت است و جز نیروهای اولیه محسوب می شود یا نه؟ از آنجاییکه اگر این ذرات خلا وجود داشتند دارای جرم نبودند پس فرض کردند که این انرژی باید کوچکترین انرژی امکان پذیر در یک سیستم مکانیک کوانتومی باشد. فرض بعدی از این قرار بود که هر سیستم کوانتومی خود دارای یک مقدار دارای نظم از این انرژی باشد. یعنی بین این مقادیر در سیستم های مختلف نظم و رابطه ای ریاضی برقرار باشد. حال هرجا این مقدار انرژی به مقدار همیلتونین (Hamiltonian) برسد به آن ارزش انتظاری خلا یا انرژی خلا می گویند. اعتقاد تئوری ما بر این است که Casimir Effect و van der Waals force هر دو در تلاش بوده اند تا نیرو (یا انرژی ای) را پیدا کنند که جز عوامل شناخته شده نباشد. این عامل همان خلا می باشد که طبق مدل مکانیک ما از لحاظ نیرو یا انرژی طبقه بندی می شود. این عامل بین دو بازه ی نیرو و انرژی قرار دارد. سرعتی که این عامل تماما از نیرو می باشد را در مدل صفر فرض کرده ایم و در سرعت مربع نور عامل کاملا انرژی می شود. اما به طور معمول و در اثر گرانش که برآیند نیروی این عامل و دافعه ی ماده است مقدار نیرو در اثرات این عامل جذری از مقدار انرژی در آن است. (مقادیر بازه ی بالا و پایین برای حد خلا تعریف نمی شوند. زیرا خلا در سرعت تقریبی ثابتی دفع و ایجاد گرانش می کند). و همانطور که در مقاله ی "نیروی خلا و گرانش" گفتیم جرم قبل از اینکه به انرژی تبدیل شود طبق فرمول هم ارزی و ثابت مرتبط به نیرو تبدیل می شود. در واقع ما بیان می کنیم که هرجسم شتاب دار از یک ذره ی مشخص تشکیل نشده و خود از سه عامل جرم نیرو و انرژی به نسبت سرعتش ایجاد شده که نام آن را عامل ناشناخته یا
(U agent (Unknown Agent انتخاب کرده است. اما تفاوتی که این تئوری با فرضیه های قبلی دارد در این می باشد که این نظریه مفهوم جدیدی از خلا و ذرات آن را تعریف می کند. اثر کازیمیر همراه با بیان چندی از اثرات خلا ذرات آن را دارای اسپین و انرژی و قطبیدگی و غیره می نامد. در صورتیکه ما آن ذرات را به صورت ضد ماده با خواص محدود و و جدا از خواص مادی بیان می کند. با همه ی این تفاسیر بزرگترین سوال فیزیک در سال ۲۰۰۶ این بوده است که چرا این مقدار انرژی نقطه ی صفر اشباع نمی شود و باعث یک مقدار کیهانی بزرگ نمی گردد؟ جواب ما ساده است: به خاطر اینکه گرانش را ایجاد می کند و مطلقا از انرژی نیست. اما قبل از اینکه بیشتر وارد تشریح امر شویم بهتر است انرژی نقطه ی صفر (ZPE) را کمی بیشتر توضیح دهیم. همانطور که به صورت خلاصه بیان کردیم انرژی نقطه ی صفر (ZPE) کمترین مقدار انرژی ای است که یک سیستم مکانیک کوانتومی می تواند داشته باشد. هر سیستمی مقدار انرژی نقطه ی صفر مخصوص به خود را دارد اما پایین ترین مقدار آن را به خلا نسبت می دهند. انرژی نقطه ی صفر خلا به صورت واضحی از اثر کازیمیر نتیجه می شود و محققان احتمال می دهند راز ثابت کیهانی در این مورد نهفته باشد. همچنان که گفتیم مقدار انرژی نقطه ی صفر در اثر کازیمیر خود مرتبط به ارزش انتظاری خلا و مقدار همیلتونین است. این مقدار توضیح تا اینجای کار کافی است. گفتیم که دانشمندان همواره از خود می پرسند چرا انرژی نقطه ی صفر اگر منشایی مانند خلا دارد چرا در دنیا اشباع نمی شود. همانطور که در بخش معرفی خواندید ما گرانش را برآیند نیروهای دافعه ی خلا و ماده می دانیم. اینگونه مشاهده می کنید که نیروی ایجاد شده از این اثر همان گرانش است. بنابراین دلیلی برای اشباع شدن نیست. دلیل دوم این است که طبق مدل مکانیک ما دفع خلا در سرعت نور انجام می شود و در این سرعت عامل را تماما نمی توان به انرژی مرتبط کرد. به مقدار جذری از انرژی کل در عامل نیز جرم وجود دارد و طبق فرمول هم ارزی به همین نسبت نیز همواره نیرو در عامل ایجاد می شود. تا قبل از این هرگونه اثری را تنها به انرژی خلا مرتبط می ساختند زیرا این موارد حتی برای یک جرم تنها در خلا نیز اتفاق می افتاد!هنوز هم برای فیزیکدانان این یک مسئله است که چطور خلایی را که خالی تصور می کنیم چنین اثراتی دارد؟ این اثرات را باید به کدام ذره نسبت داد؟ یک ذره ی مجازی؟ اگرچه دانشمندان در سالهای اخیر به خصوص ۱۹۸۰ سعی داشتند گرانش را به انرژی ربط دهند و این امر را نیز توجیه کنند اما با مشاهده ی رفتارهای دنیا فرض آنها با شکست مواجه شد. در حال حاضر نیز ۳ چیز در کیهان شناسی وجود دارد که کاملا مرتبط به هم هستند اما هرسه بدون پاسخ باقی مانده اند:
۱) ثابت کیهانی
۲) انرژی خلا
۳) انرژی نقطه ی صفر!
حال می دانیم که این اثر با آنکه مرتبط به خلا است اما نباید کاملا آن را به انرژی نسبت داد. همچنین ماده ای در این امر دخیل نیست و این تنها کنش میان خلا (ضدماده) و ماده است. به همین گونه توانستیم هر سه مورد را با دلایلی که فقط راز آنها نهفته در دفع خلا (ضدماده) با ماده بود توجیه کنیم. (مبحث ثابت کیهانی را در مقاله ی "ثابت کیهانی و شتاب انبساط دنیا" تشریح کردیم و از دیدگاه خود توجیه کردیم).
 

mahdi.adelinasab

کاربر بیش فعال
کاربر ممتاز
ابررساناهای دمای بالا

ابررساناهای دمای بالا

زمینه ای جدید در علم فیزیک آغاز شد هنگامی که در ۲۷ ژانویه ۱۹۸۶ میلادی، Bednorz و Mueller یک افت مقاومت تیز را در La2-mBmCuO4 در دمای حدود ۳۰ درجه ی کلوین مشاهده کردند. آن ها مقاله ای در این باره به یکی از روزنامه های معتبر اروپائی، ZeitSchrift fur Physik فرستادند و مطالعه ی خود را برروی این ماده ی جدید ادامه دادند تا اطمینان حاصل کنند که تغییر مقاومت ناگهانی، تبدیل به یک حالت ابررسانایی بوده.تا ماه اکتبر، آن ها اثر مایزنر (The Meissner Effect) را مشاهده کرده بودند ، بنابراین یک ماده ابررسانای جدید را به ثبت رساندند. نتایج آن ها در دنیا پخش شد، یک ماه بعد، Tanaka و همکاران وی در توکیو نتایج Bednorz-Muller را تأیید نمودند (یک تأییدیه در یکی از روزنامه های ژاپنی چاپ شد) در حالی که کار آن ها در پکن توسط Zou و همکارانش پشتیبانی و حمایت شد. (کار آنها در دسامبر در یکی از روزنامه ها توضیح داده شد.) در ماه بعد، در نتیجه ی یک تلاش همکارانه بین Paul Chu از دانشگاه هوستون و Mang-Kang Wu از دانشگاه آلاباما، عضو جدیدی از خانواده مواد ابررساناهای دما بالا کشف شد ، YBa2Cu3O7که دارای بالای ۷۰ درجه ی کلوین بود. بنابراین فقط در طی یک سال از کشف اصلی، دمای انتقال به حالت ابررسانایی افزایش سه برابر داشت.و واضح بود که انقلاب ابررسانا ها هنوز شروع شده است. یک جشن برای بوجود آمدن این فصل در علم فیزیک طی یک جلسه در نیویورک توسط انجمن فیزیک دانان آمریکایی در یک بعد از ظهر یکی از روزهای مارس ۱۹۸۷ برگزار شد. این جشن ۳۰۰۰ شرکت کننده داشت و ۳۰۰۰ نفر نیز این جشن را از طریق تلویزیون مشاهده می کردند ...در طول شش سال بعد، چند خانواده ی دیگر از ابررسانا ها کشف شدند، که شامل سیستمهای مبنی بر -Tl و -Hg می باشند، که به ترتیب دارای حداکثر ۱۲۰ کلوین و ۱۶۰ کلوین می باشند. همگی آنها یک ویژگی که موجب روی دادن ابررسانایی دمای بالا بود، داشتند، وجود پلین های (planes) شامل اتم های O و Cu ی که جدا شده بوسیله ی مواد پل کننده ای که به عنوان حامل بار عمل می کنند هستند. در طی این مدت، حدود چند هزار مقاله در رابطه با ابررسانا ها منتشر گشت (و در زمان حاضر هم منتشر می شود) بدیهی گشت که ابررسانایی دمای بالا وابسته به مسائل بزرگ فیزیک بسیاری در طول دهه ی گذشته ی این قرن بود.
حداقل چهار دلیل برای علاقه ی شدید به بالا وجود دارد:
۱) علاقه ی علمی ذاتی و باطنی،
۲) طبیعت انتقال نظم و ترتیبی، (این به حدود جدا کننده ی دانشمندان و شیمی دان های مواد از طریق فیزیکدان های نظری و تجربی می رسد)؛
۳) کاربردهای بالقوه برای مواد ی که دردماهای بالاتر از ۷۷ کلوین (دمایی که نیتروژن مایع می شود) به عنوان ابررسانا عمل می کنند، کاربردهایی که می توان در سیستم های تلفن سلولی اعمال کرد،خطوط انتقال ابررسانایی، ماشین های MRI استفاده کنند از مغناطیس های بالا، میکروویو های استفاده کننده از مواد ابررسانای جدید، سیستم های ابررسانا/ نیمه رسانای هیبریدی؛
۴) پیدا کردن ابررسانای دمای اتاق.
برخی مشخصه ها و خواص ابررسانا های جدید عبارتند از اینکه آن ها سرامیک، و اکسید های ورقه ورقه می باشند که در دمای اتاق فلزات ضعیف و بی ارزشی هستند، و مواد متفاوتی برای کار کردن هستند. شامل کمی حامل بار در مقایسه با فلزات معمولی هستند، و خواص انیسوتوروپیک (Anisotropic) الکتریکی و مغناطیسی هستند که بطور قابل ملاحظه ای حساس به محتوای اکسیژن می باشند. در حالی که، نمونه های ابررسانای مواد ۱-۲-۳ ، YBa2Cu3O7، را یک دانش آموز دبیرستانی نیز می تواند در یک اجاق میکروویو تولید کند، کریستال های یکتای دارای درجه ی خلوص بالا برای تشخیص خواص فیزیکی ذاتی موادی که ساختن آن ها به طور خیلی زیادی سخت است، لازم است.در ادامه ی یک دهه کار، یک وفاق عمومی بر سر این موضوع وجود دارد که رفتار تحریکات ابتدائی در پلین های (planes) ، Cu-O یک کلید برای درک خواص حالت عادی این ابررساناها ارائه می دهد، و اینکه آن خاصیت غیر حالت عادی شبیه به حالت عادی ابررساناهای معمولی و دمای پایین می باشند.علاوه بر این، اساسا هیچ یک از خواص حالت ابررسانایی ، با خواص یک ابررسانای عادی یکی نیست، که در آن جفت کردنتئوری BCS در حالت خط واحد اتفاق می افتد و شکاف انرژی ذرات quasi در دماهای پائین و ایزوتپریک، هنگامی که یکی حول سطح فرمی حرکت می کند، محدود می باشد. علی رغم این حقیقت که چیزی نسبتا جدید و متفاوت نیاز است تا رفتار حالت عادی را درک کنیم، یک توافق و اجماع وجود دارد که تئوری BCS ، اگر بطور مناسبی تغییر یابد، یک توضیح راضی کننده برای انتقال به حالت ابررسانایی و خواص مواد در آن حالت، می دهد .یک توافق تقریبی همچنین در رابطه با اجزای سازنده ی پایه ی لازم برای درک ابررساناهای دمای بالا وجود دارد. آن ها را می توان به صورت زیر خلاصه کرد: عمل ابتدا در پلین های Cu-O رخ می دهد، پس در تخمین اول، برای متمرکز کردن هم توجه نظری و هم عملی روی رفتار تحریکات پلانار، و همچنین برای متمرکز کردن بر روی دو سیستم مطالعه شده ، سیستم ۱-۲-۳ (YBa2Cu3O7-m) و سیستم ۲-۱-۴ (La2-mSmCuO4)، کفایت می کند.در دماهای پائین هر دو سیستم عایق های آنتی فرو مغناطیس می باشند با یک آرایه ی محلی +Cu۲ که علامت آن در داخل شبکه متناوبا عوض می شود .شخصی سوراخ هایی را بر روی پلین های Cu-O سیستم ۱-۲-۳ با تزریق اکسیژن ایجاد می کند، برای سیستم ۲-۱-۴ این کار با تزریق استرونتیوم انجام می گیرد. سوراخ های حاصل روی مقر پلانار اکسیژن، با اسپین های نزدیک +Cu۲ پیوند پیدا می کنند، و حرکت را برای دیگر اسپین های +Cu۲آسان می سازد، و در روند، نابود کردن همبستگی های AF طولانی برد در عایق.اگر کسی حفره های کافی را ایجاد کند، سیستم حالات پایه ی خود را از یک عایق به یک ابررسانا تغییر می دهد.در حالت عادی مواد ابررسانا ، اسپین های ۲ +Cu سیار، اما محلی یک مایع فرمی غیر مرسوم را تشکیل می دهند ، با اسپین های quasiparticle های نشان دهنده ی ارتباطات AF قوی، حتی برای سیستم های در سطح تخدیر که از حدی که ماکزیمم می باشد، تجاوز می کند ، موادی که با نام فرا-تخدیر شناخته می شوند. اگر چه هیچ توافقی بین تئوریسین ها بر سر این که چگونه یک توضیح نظریه ای دارای جزئیات برای curpate ها ارائه کنند. راهکرد هایی که برای اینکار امتحان شد، را می توان به از پایین به بالا- یا از بالا به پایین رده بندی کرد. در راهکرد از بالا به پائین، یکی مدلی را که از قبل وجود داشته را انتخاب می کند و راه حل هایی برای انتخاب های دیگر پارامترهای مدل را توسعه می دهد ، سپس تست می کند که آیا این راه حل به نتایج منطبق بر شواهد و تجربیات رسیده اند یا نه.در یک راهکرد از پائین به بالا، یک از نتایج تجربی آغاز می کند و تلاش می کند تا یک توضیح پدیده ای از یک زیر مجموعه از نتایج تجربی را بدست آورد. سپس چند آزمایش دیگر را متناسب با توضیح بدست آمده انجام می دهد ، با ترتیب میکروسکوپی برای هر آزمایش، تا اینکه به نتایج مورد انتظار از محاسبات و مشاهدات دست بیابد. و فقط آن وقت، بدنبال یک مدل همیلتونی که راه حلش ممکن است تئوری میکروسکوپی کامل را ارائه دهد، بگردد و جستجو کندJonh Bardeen. از این راهکرد دوم برای کار کردن بر روی ابررساناهای عادی و مرسوم استفاده کرد، و در دانشگاه اوربانا از روش و راهکرد او برای کار برروی ابررسانای دمای بالا استفاده کردند.
 

mahdi.adelinasab

کاربر بیش فعال
کاربر ممتاز
آشکارساز تناسبی چیست؟

آشکارساز تناسبی چیست؟

آشکارساز تناسبی نوعی آشکارساز گازی با دو الکترود، یکی استوانه و یکی سیمی در راستای محور استوانه است. وقتی آشکارساز در ناحیهای (ازلحاظ ولتاژ بین الکترودها) کار کند که در آن شماره یونهای ایجاد شده، متناسب با انرژی اشعه باشد. در این صورت آشکارساز تناسبی نام دارد. ولتاژ اعمال شده در این آشکارساز بیشتر از ولتاژ اعمال شده در اتاقک یونیزاسیون می‌‌باشد که ولتاژ اعمال شده بین دو الکترود به اندازهای بزرگ است که الکترون یونش یافته یک اتم انرژی کافی درحرکت به سوی الکترود آند بدست می‌‌آورد و انرژی الکترون به اندازهای است که موجب یونش اتمهایی در مسیر خود میشود.

مشخصات و طرز کار آشکارساز تناسبی
آشکارساز تناسبی از یک الکترود سیلندری و یک رشته سیم مرکزی که معمولا از تنگستن میباشد، ساخته میشوند. به دلیل وضع هندسی دستگاه میدان الکتریکی در فاصله x از سیم برابر است با "(E=V/XLn(b/a" که درآن V ولتاژ وصل شده بین الکترودها و a و b به ترتیب شعاعهای سیم و الکترود خارجی می‌‌باشند. میدان الکتریکی در نزدیک رشته سیم خیلی بزرگتر است و با فاصله از سیم نسبت عکس دارد. بنابراین بیشترین تکثیر در نزدیکی سیم مرکزی انجام می‌‌پذیرد. حدود نصف از زوجهای یون در فاصلهای برابر با متوسط طول آزاد و ۹۹% زوجهای یون در هفت برابر متوسط طول آزاد از الکترود مرکزی تشکیل میگردند. زمان جمع آوری الکترونها خیلی کوچک است. به هرحال چون الکترونها خیلی نزدیک به الکترود مرکزی ایجاد می‌‌‌شوند، v? مربوط به جمع آوری الکترون در الکترود مرکزی خیلی کوچک میباشد.بنابراین سهم بیشتر سقوط پتانسیل مربوط به یونهای مثبت است. وجود این که یونهای مثبت کندتر از الکترونها هستند، پس از عبور مسافت کمی از سیم مرکزی بیشترین سقوط پتانسیل را درفاصله زمانی کوتاه بوجود می‌‌آورند. درنتیجه، پالس مربوط به رسیدن یک زوج یون ابتدا خیلی سریع و سپس به کندی صعود مینماید. گاهی اوقات وقتی محل تشکیل هر یک از یونها نسبت به الکترود مرکزی متفاوت باشد، زمان تشکیل پالسها نامشخص خواهدبود. در چنین حالتی زمان لازم برای الکترونهای مختلف در رسیدن به ناحیه تکثیر یکسان نخواهد بود. تقویت کنندههای مرحله اول یونها را جمع آوری میکنند تا این نامعلومی را کاهش دهند.

زمان تفکیک
در آشکارساز تناسبی، یونیزاسیون محدود به ناحیه اطراف مسیر اشعه میباشد. فرض کنیم که تابش ۱ در زمان ۱t وارد شمارنده میشود و تابش مشابه ۲ در یک ناحیه دیگر در زمان ۲t وارد آشکارساز میشود. در الکترود جمع کننده سقوط پتانسیل خواهیم داشت. اگر تقویت کننده دستگاه آشکارساز بتواند این تغیییر ولتاژ را به عنوان دو علامت الکتریکی تشخیص دهد و اگر این کمترین زمان جدایی باشد که این تشخیص امکانپذیر میگردد، در این صورتt2-t1 زمان تفکیک (Resolving time) برای آشکارساز تناسبی است. بنابراین زمان تفکیک (T) تابع سیستم الکتریکی است.اگر زمان تفکیک صفر باشد، تغییر تعداد شمارش برحسب تغییر تعداد تابش باید یک خط مستقیم باشد. به هرحال اگر زمان تفکیک بینهایت باشد، این منحنی در سیستم مختصات y-x به محور x متمایل شده و بالاخره آن را قطع خواهد نمود. یعنی وقتی تعداد تابشهایی که وارد آشکارساز می‌‌شوند افزایش یابد، تعداد شمارش ثبت شده ابتدا افزایش مییابد و بعد از رسیدن به یک ماکزیمم به طرف صفر میل میکند. در این میزان شمارش صفر، ولتاژ الکترود جمع کننده ثابت می‌‌ماند. زیرا که میزان جمع آوری یونها برابر میزان نشت یونها خواهد بود.

آشکارساز تناسبی حساس نسبت به محل ورود اشعه
یکی از تفاوتهای اساسی بین آشکارساز تناسبی و آشکارساز گایگر مولر این است که در آشکارساز تناسبی، یونیزاسیون محدود به ناحیه کوچکی در اطراف مسیر ذره تابشی است. در صورتی که در آشکارساز گایگر یونیزاسیون در تمام حجم آشکارساز انجام میشود. بنابراین در آشکارسازهای تناسبی، امکان این که اطلاعاتی در مورد محل اشعه تابشی بدست آوریم، وجود دارد. در این نوع از آشکارسازها، آند از یک سیم با مقاومت زیاد (معمولا رشته کوارتز با پوششی از کربن) تشکیل میشود. فرض کنیم ذره تابشی در وضعیت x یونهایی در مجاورت آند ایجاد می‌‌نماید. این یونها بوسیله آند جمع آوری شده و باعث جاری شدن جریان در دو جهت در طول آند خواهد شد. مقدار جریانی که از هر جهت جاری میشود تابع مقاومت در مسیر میباشد. به دلیل تفاوت جریان در دو انتهای آند پالسهای ایجاد شده در دو انتهای آند در ارتفاع و زمان صعود متفاوت خواهند بود. تفاوت در زمان صعود، به دلیل تفاوت در ثابت زمانی، معمولا برای بدست آوردن اطلاعات درباره محل اشعه بکار میرود.

شمارش نوترون با آشکارساز تناسبی
علاوه بر اینکه میتوان از آشکارساز تناسبی برای آشکارسازی ذرات آلفا و بتا استفاده نمود. این آشکارساز میتواند در آشکارسازی نوترونها نیز مورد استفاده قرار گیرند. یک آشکارساز واقعی نوترون معمولا گاز BF خالص و یا مخلوطی از BF۳ و یکی از گازهای استاندارد آشکارسازهای گازی، میباشد. وقتی که نوترون حرارتی بوسیله هسته جذب میشود، دو ذره یونیزه کننده قوی یکی ذره آلفا و دیگری هسته لیتیم که در جهت مخالف حرکت ذره آلفا حرکت می‌‌کند، رها میشوند. پالسهای ایجاد شده بوسیله محصولات واکنش هستهای در مقایسه با پالسهای بوجود آمده بسیله تابشهای نظیر اشعه گاما، دارای ارتفاع نسبتا بزرگ است.

رابطه ارتفاع پالس با نوع ذره
نکتهای که وجود دارد رابطه ارتفاع پالس و نوع ذره است. ارتفاع پالسهای ایجاد شده با ذرات یونیزه کننده سنگین مانند ذرات آلفا، ممکن است بطور قابل ملاحظهای از پالسهای بوجود آمده بوسیله الکترونهای با انرژی برابر، متفاوت باشد. این اختلاف تابع نوع اشعه است که معمولا برای آشکارسازهای گازی، کوچک می‌‌باشد. در مورد آشکارسازهای تناسبی و یونیزاسیون و آشکارساز نیم رسانا این حالت وجود دارد.
 

mahdi.adelinasab

کاربر بیش فعال
کاربر ممتاز
آشکارساز تناسبی چیست؟

آشکارساز تناسبی چیست؟

آشکارساز تناسبی نوعی آشکارساز گازی با دو الکترود، یکی استوانه و یکی سیمی در راستای محور استوانه است. وقتی آشکارساز در ناحیهای (ازلحاظ ولتاژ بین الکترودها) کار کند که در آن شماره یونهای ایجاد شده، متناسب با انرژی اشعه باشد. در این صورت آشکارساز تناسبی نام دارد. ولتاژ اعمال شده در این آشکارساز بیشتر از ولتاژ اعمال شده در اتاقک یونیزاسیون می‌‌باشد که ولتاژ اعمال شده بین دو الکترود به اندازهای بزرگ است که الکترون یونش یافته یک اتم انرژی کافی درحرکت به سوی الکترود آند بدست می‌‌آورد و انرژی الکترون به اندازهای است که موجب یونش اتمهایی در مسیر خود میشود.

مشخصات و طرز کار آشکارساز تناسبی
آشکارساز تناسبی از یک الکترود سیلندری و یک رشته سیم مرکزی که معمولا از تنگستن میباشد، ساخته میشوند. به دلیل وضع هندسی دستگاه میدان الکتریکی در فاصله x از سیم برابر است با "(E=V/XLn(b/a" که درآن V ولتاژ وصل شده بین الکترودها و a و b به ترتیب شعاعهای سیم و الکترود خارجی می‌‌باشند. میدان الکتریکی در نزدیک رشته سیم خیلی بزرگتر است و با فاصله از سیم نسبت عکس دارد. بنابراین بیشترین تکثیر در نزدیکی سیم مرکزی انجام می‌‌پذیرد. حدود نصف از زوجهای یون در فاصلهای برابر با متوسط طول آزاد و ۹۹% زوجهای یون در هفت برابر متوسط طول آزاد از الکترود مرکزی تشکیل میگردند. زمان جمع آوری الکترونها خیلی کوچک است. به هرحال چون الکترونها خیلی نزدیک به الکترود مرکزی ایجاد می‌‌‌شوند، v? مربوط به جمع آوری الکترون در الکترود مرکزی خیلی کوچک میباشد.بنابراین سهم بیشتر سقوط پتانسیل مربوط به یونهای مثبت است. وجود این که یونهای مثبت کندتر از الکترونها هستند، پس از عبور مسافت کمی از سیم مرکزی بیشترین سقوط پتانسیل را درفاصله زمانی کوتاه بوجود می‌‌آورند. درنتیجه، پالس مربوط به رسیدن یک زوج یون ابتدا خیلی سریع و سپس به کندی صعود مینماید. گاهی اوقات وقتی محل تشکیل هر یک از یونها نسبت به الکترود مرکزی متفاوت باشد، زمان تشکیل پالسها نامشخص خواهدبود. در چنین حالتی زمان لازم برای الکترونهای مختلف در رسیدن به ناحیه تکثیر یکسان نخواهد بود. تقویت کنندههای مرحله اول یونها را جمع آوری میکنند تا این نامعلومی را کاهش دهند.

زمان تفکیک
در آشکارساز تناسبی، یونیزاسیون محدود به ناحیه اطراف مسیر اشعه میباشد. فرض کنیم که تابش ۱ در زمان ۱t وارد شمارنده میشود و تابش مشابه ۲ در یک ناحیه دیگر در زمان ۲t وارد آشکارساز میشود. در الکترود جمع کننده سقوط پتانسیل خواهیم داشت. اگر تقویت کننده دستگاه آشکارساز بتواند این تغیییر ولتاژ را به عنوان دو علامت الکتریکی تشخیص دهد و اگر این کمترین زمان جدایی باشد که این تشخیص امکانپذیر میگردد، در این صورتt2-t1 زمان تفکیک (Resolving time) برای آشکارساز تناسبی است. بنابراین زمان تفکیک (T) تابع سیستم الکتریکی است.اگر زمان تفکیک صفر باشد، تغییر تعداد شمارش برحسب تغییر تعداد تابش باید یک خط مستقیم باشد. به هرحال اگر زمان تفکیک بینهایت باشد، این منحنی در سیستم مختصات y-x به محور x متمایل شده و بالاخره آن را قطع خواهد نمود. یعنی وقتی تعداد تابشهایی که وارد آشکارساز می‌‌شوند افزایش یابد، تعداد شمارش ثبت شده ابتدا افزایش مییابد و بعد از رسیدن به یک ماکزیمم به طرف صفر میل میکند. در این میزان شمارش صفر، ولتاژ الکترود جمع کننده ثابت می‌‌ماند. زیرا که میزان جمع آوری یونها برابر میزان نشت یونها خواهد بود.

آشکارساز تناسبی حساس نسبت به محل ورود اشعه
یکی از تفاوتهای اساسی بین آشکارساز تناسبی و آشکارساز گایگر مولر این است که در آشکارساز تناسبی، یونیزاسیون محدود به ناحیه کوچکی در اطراف مسیر ذره تابشی است. در صورتی که در آشکارساز گایگر یونیزاسیون در تمام حجم آشکارساز انجام میشود. بنابراین در آشکارسازهای تناسبی، امکان این که اطلاعاتی در مورد محل اشعه تابشی بدست آوریم، وجود دارد. در این نوع از آشکارسازها، آند از یک سیم با مقاومت زیاد (معمولا رشته کوارتز با پوششی از کربن) تشکیل میشود. فرض کنیم ذره تابشی در وضعیت x یونهایی در مجاورت آند ایجاد می‌‌نماید. این یونها بوسیله آند جمع آوری شده و باعث جاری شدن جریان در دو جهت در طول آند خواهد شد. مقدار جریانی که از هر جهت جاری میشود تابع مقاومت در مسیر میباشد. به دلیل تفاوت جریان در دو انتهای آند پالسهای ایجاد شده در دو انتهای آند در ارتفاع و زمان صعود متفاوت خواهند بود. تفاوت در زمان صعود، به دلیل تفاوت در ثابت زمانی، معمولا برای بدست آوردن اطلاعات درباره محل اشعه بکار میرود.

شمارش نوترون با آشکارساز تناسبی
علاوه بر اینکه میتوان از آشکارساز تناسبی برای آشکارسازی ذرات آلفا و بتا استفاده نمود. این آشکارساز میتواند در آشکارسازی نوترونها نیز مورد استفاده قرار گیرند. یک آشکارساز واقعی نوترون معمولا گاز BF خالص و یا مخلوطی از BF۳ و یکی از گازهای استاندارد آشکارسازهای گازی، میباشد. وقتی که نوترون حرارتی بوسیله هسته جذب میشود، دو ذره یونیزه کننده قوی یکی ذره آلفا و دیگری هسته لیتیم که در جهت مخالف حرکت ذره آلفا حرکت می‌‌کند، رها میشوند. پالسهای ایجاد شده بوسیله محصولات واکنش هستهای در مقایسه با پالسهای بوجود آمده بسیله تابشهای نظیر اشعه گاما، دارای ارتفاع نسبتا بزرگ است.

رابطه ارتفاع پالس با نوع ذره
نکتهای که وجود دارد رابطه ارتفاع پالس و نوع ذره است. ارتفاع پالسهای ایجاد شده با ذرات یونیزه کننده سنگین مانند ذرات آلفا، ممکن است بطور قابل ملاحظهای از پالسهای بوجود آمده بوسیله الکترونهای با انرژی برابر، متفاوت باشد. این اختلاف تابع نوع اشعه است که معمولا برای آشکارسازهای گازی، کوچک می‌‌باشد. در مورد آشکارسازهای تناسبی و یونیزاسیون و آشکارساز نیم رسانا این حالت وجود دارد.
 

mahdi.adelinasab

کاربر بیش فعال
کاربر ممتاز
تاکیون

تاکیون

مارس ۱۹۹۳ بوسیله ی اسکات . آی. چیس (Scott I. Chase)
اولین انتشار در مجله ی علوم (Science Magazine)
رجینالد بولر(Reginald Buller) :
روزی یک خانم که نامش روشن بود با سرعت بسیار بیشتر از نور وارد راه نسبیت شد و شب گذشته برگشت!
این برای همه مشخص است که سفر با سرعتی بالاتر از نور امکان ندارد. در بهترین حالت یک ذره ی بدون جرم با سرعت نور سفر می کند. اما آیا این درست است؟ سال ۱۹۶۲: بیلانیوک (Blianiuk) و دشپند (Deshpande) و سادرشان (Sudarshan) در مجله ی فیزیک امروز (Physics Today) شماره ی ۲۲: صفحه ی ۴۳: توضیحی مختصر: برداری بکشید که با نیروی حرکت (P) در بعد X و با انرژی (E) در بعد Y. حال مخروط نور را با دو خط رسم کنید. (با در نظر گرفتن این که نیروی حرکت در این مورد برابر با انرژی است "E =P") این بردار فضا زمان تک بعدی ما را به دو بخش تقسیم می کند. بالا و پایین بردار مربع هایی زمان شکل و چپ و راست آن مربع هایی فضا شکل ایجاد می شود. حال حقیقت بنیادی نسبیت اینگونه است:

E2.P2=m2

از این به بعد برای آسودگی در کار سرعت نور را یک فرض می کنیم. (C =۱). برای مقادیر غیر صفر در جرم (m) یک شکل هذلولی به همراه چند شاخه در قسمت زمان شکل ایجاد خواهد شد. این مقدار از نقطه ی (P,E)=(0,m) می گذرد که در آن ذره در توقف خواهد بود. هر ذره ای با جرم (m) ناگزیر است که به قسمت های بالای هذلولی حرکت کند. در غیر این صورت در مدتی بدون پوشش (تابع پوشش) خواهد شد. البته در مجامع از آنها با نام ذرات مجازی یاد می شود که این به دور از بحث ماست. برای ذرات بدون جرم E2=P2 و به همین دلیل ذره به مخروط نور حرکت خواهد کرد. این دو مورد نام هایی از قبیل تاردیون (Tardyon) که در تحقیقات نوین به آن برادیون (Bradyon) می گویند را دارا هستند. لوگزون (Luxon) ذراتی با سرعت کم در حدود سرعت ذرات نور هستند. تاکیون (Tachyon) نامی است که به ذرات پر سرعت نسبت داده شده است که در صورت وجود در آنها V>C می باشد. تاکیون ها اولین بار توسط جرالد فینبرگ (Gerald Feinberg) به فیزیک معرفی شدند. این معرفی بر روی کاغذی (در مقاله ای) که در مراحل ابتدایی بود با نام "امکان ذراتی با سرعت بیشتر از نور" ((On the possibility of faster than light particlesانجام شد. حال مانوس ترین معادله ی نسبیت به حالت زیر است:

E=m. [ (V/C) 2] (-.0.5)
این بدان معناست که انرژی در این مورد مجازی است. اگرچه ما مقدار جرم را مجازی تصور می کنیم. آن هنگام انرژی به صورت حقیقی اما منفی برابر با مقدار زیر خواهد بود:

E2.P2=m2<0
که در اینجا m نیز حقیقی است. این مقدار هذلولی ای را در قسمت فشا شکل نمودار فضا زمان ایجاد می کند. انرژی و نیروی حرکت یک تاکیون باید این رابطه را توجیه کند. بدین وسیله نیز می توان خواص جالبی از تاکیون ها را درک کرد. برای مثال هنگامیکه نیروی حرکت تاکیون ها کم شود آنها شتاب می گیرند. اگر آنها انرژی خود را از دست دهند سریعتر از نهایت به انرژی صفر می رسند که این فراتر از قوانین است. البته اینها نتایج عمیقی را به دنبال دارند. برای مثال فرض می کنیم که تاکیون ها دارای بار الکتریکی هستند: از آنجاییکه آنها با سرعت بیشتر از نور در خلا حرکت می کنند باید از خود تشعشعات چرنکوف (Cherenkov Radiation) منتشر کنند. انرژی کمتر آنها باعث می شود که سرعت آنها بیشتر شود. بهتر اینکه اگر تاکیون ها دارای بار الکتریکی باشند در یک واکنش به ذرات گریزان تبدیل می شوند و مقدار مطلقی از انرژی خود را رها می کنند. این مطلب بیان می کند که به رو آمدن با یک نظریه ی مشهود از هیچ (به جز تاکیون های آزاد که بدون فاصله هستند) تقریبا برای اکتشاف و درک سخت است. مشکل اینجاست که ما در آخر به خودانگیز بود خلقت تاکیون ها و جفت ضد تاکیونی (Anti-Tachyon Pair) می رسیم. البته برای حل این مشکل واکنش ذرات گریزان و نا پایدار بودن خلا را پیشنهاد کرده ایم. اگرچه برای برطرف کردن احتیاجات در تئوری میدان کوانتومی کار کمی پیچیده است و این آسان نیست که خلاصه بندی ای از نتایج داشته باشیم. اما یک راه معقول مراجعه به "تاکیون ها ذراتی تک قطبی"(Tachyons, Monopoles particles) و موضوعات مربوط است. (ای. رکمی "E. Recami" آموزش هلند شمالی آمستردام ۱۹۷۸). البته تاکیون ها ذراتی کاملا ناپدید نیستند. ممکن است تصور کنید که می توان آنها را در واکنشهای برون هسته ای تولید کرد. اگر آنها را بارور کنیم با تعقیب روشنایی تشعشعات چرنکاو می توانیم آنها را بیبینیم. اگرچه با بارور کردن آنها سرعت آنها بیشتر و بیشتر می شود. در این زمینه آزمایشات زیادی انجام گرفت اما تاکیونی پیدا نشد. تاکیون های طبیعی در آزمایشات باید از خود مواد طبیعی قابل رویت توزیع کنند اما در نتیجه و دوباره هیچ تاکیونی پیدا نشد.
اما آیا می توان توسط تاکیون ها در نقض نسبیت اطلاعات را انتقال داد؟ هنگامیکه مکانیک کوانتوم و همچنین نسبیتی این ذرات را بررسی کنیم درک جواب این سوال که آیا آنها سریعتر از نور می روند مشخص می شود. در این چهارچوب تاکیون ها موج هستند و باید معادله ی امواج را توجیه کنند. برای آسودگی بیشتر در کار اسپین تاکیون های آزاد را صفر فرض می کنیم. همانطور که گفته شد C =۱ فرض می کنیم تا محاسبات تمیز تر باشند. حال انتظار می رود که امور امواج منفرد با معادله ی معمول برای ذرات با اسپین صفر مطابق باشد. رابطه ی کلین گردن (Klein Gordon):

BOX,m2) Phi=0
)
که در آن BOX همان DAlembertian است که در ۳ بعد برابر مقدار زیر می باشد:

BOX=(d/dt)2 (d/dx)2 (d/dy)2 (d/dz)2
تفاوت در اینجاست که جرم در اینجا منفی و دا واقع مجازی است. برای اینکه دچار پیچیدگیهای ریاضی نشویم بهتر است در کی بعد و با تعادل مشترک X و t کار کنیم. بنابراین:

BOX=(d/dt)2 (d/dx)2

هر آن چیزی که گفته می شود را به صورت عام برای دنیای واقعی و ۳ بعدی خود مناسب خواهیم کرد. با در نظر نگرفتن جرم به عنوان عاملی مجازی هر معادله ای به صورت ترکیب خطی یا انطباقی راه حل هایی با فرم زیر را خواهند داشت:

Phi (t,X) = exp (-iEt,ipX)
که در آن E2.P2=m2 می باشد.
حال که مجذور جرم منفی است دو مسئله ی مجزا ایجاد می شود:
الف) هنگامیکه انرژی حقیقی است |P| ≥ |E| جواب بدین صورت خواهد بود که قلل امواج در آن در طول میزان سرعت ذره از سرعت نور کمتر نخواهد بود.
ب) هنگامیکه |P| ≤ |E| جواب بدین صورت خواهد در واقع انرژی مجازی است و جواب بدین صورت خواهد بود که امواج قوه (یک عمل ریاضی) را به عنوان گذر زمان وسعت می دهند. بنابراین نتیجه ی دوم را بررسی می کنیم. اگرچه جواب در آن غیر معلوم است اما اگر آنرا رها کنیم تمام موضوع غیر معلوم می ماند.
۱) اگر سری جواب دوم را بررسی کنیم: می توانیم معادله ی کلین گردن را از راهی غیر معقول بدون اعداد اولیه و مقدار غیر معقول برای Phi و با اولین مشتق گیری آن و در نتیجهt =۰ حل کنیم. با شاخص معادله ی امواج ما می توانیم گفته ی زیر را اثبات کنیم که Phi و زمان آن با مشتق گیری در بیرون بازه ی [-L,L] صفر خواهد شد. و هنگامیکه t =۰ است تمامی مقادیر نیز در بازه ی [-L -|t| , L |t|] در هر زمانی صفر خواهد شد. در گفتار بهتر متمرکز کردن پراکندگی ها سرعت بیشتر از سرعت نور را ایجاد نخواهد کرد. این بر خلاف عقیده ی ما به نظر می رسد اما این یک حقیقت ریاضی است که تاکیون ها با سرعتی بیشتر از سرعت نور حرکت می کنند و این به نام "سرعت واحد انتشار" Unit Propagation Velocity)) شناخته شده است.
۲) اگر سری جواب دوم را بررسی نکنیم: معادله ی کلین گردن را نمی توانیم با ارقام ابتدای حل کنیم. اما فقط مقادیر ابتدایی!زیرا فوریر (Fourier) با استفاده از قضیه ی پالی - وینر (Paley Wiener) این موضوع را از بی مقداری در بازه ی [-|m|,|m|] به کلی تغییر داد. این کار نتیجه ای عجیب داشت: این دیگر غیر ممکن بود که معادله را با مقادیر ابتدایی ای که بعضی از مقادیر را در بیرون از بازه ی نام برده ی [-L,L] از بین می برد حل کرد. در گفتار بهتر ما نمی توانیم تاکیون ها را در منطقه ای خاص بویژه مکان اولیه شان محدود کنیم. بنابراین غیرممکن است که تصمیم بگیریم آیا سرعت واحد انتشار در بخش اول وجود دارد یا نه؟ البته قلل امواج (exp (-iEt,iPx با سرعتی بیش از سرعت نور حرکت می کنند اما این امواج هیچگاه در مکان اولیه متمرکز نشده اند. و این بدین معناست که ما نمی توانیم از تاکیون ها برای انتقال اطلاعات استفاده کنیم. در واقع انجام این کار احتیاج به رمز نویسی ای دارد که آن با تمرکز میدان تاکیون ها همراه است و فرستادن آن نیازمند داشتن گیرنده های مخصوصی می باشد که این کار را انجام دهند. اما می دانیم که به هر حال به هر دو روش نمی توان اینکار را انجام داد. در واقع: متمرکز کردن تاکیون های پراکنده مادون روشنایی است و ماورای روشنایی حاصل پراکنده و نا متمرکز بودن تاکیون ها است.

منبع مقاله :

Science Magazine
 

mahdi.adelinasab

کاربر بیش فعال
کاربر ممتاز
ذرات بنیادین خلا و ضد مواد

ذرات بنیادین خلا و ضد مواد

گرچه نظر اصلی دانشمندان در مورد ضد مواد مشخص نیست اما تعدادی از آنها بر این تاکید دارند که ذرات پاد زیر اتمی مانند پوزیترون می توانند از ضد مواد باشند. بعضی دیگر هم اعتقاد دارند ضد مواد در سیاه چاله ها ایجاد می شوند. اما حقیقت چیست؟
عقیده ی ما بر این است که اگر خلا عامل اصلی گرانش و ایجاد کننده ی نیروی دافعه باشد باید از ذراتی غیر مادی تشکیل شده باشد.
برای آسان تر کردن کار ابتدا فرض می کنیم این ذرات دقیقا مخالف مواد هستند.
طبق تعاریف گفته شده شتاب گرانشی حاصل از برآیند نیروهای دفع خلا و ماده است که این نشان می دهد دو نیروی دافعه ی ماده و خلا برابر نیستند.
در همین جا متوجه می شویم که قانون سوم نیوتن برای این ذرات آنچنان درست نیست.
زیرا عمل (دافعه ی خلا) را اگر در این فرآیند F = C فرض کنیم دافعه ی ماده F < C خواهد بود که این نشان می دهد عکس العمل در جهت عکس وارد می شود اما دقیقا برابر نیروی وارده نیست.
بنابراین قانون اول در مورد ضد مواد: عمل و عکس العمل ضد مواد:

۱) نیروی عمل ضد ماده همیشه از نیروی عکس العمل ماده بیشتر است.

اما در اینجا یک استثنا بوجود می آید:

می دانیم که جهان در حال انبساط است. پس طبق قوانین گفته شده اجرام از آن نقطه شتاب می گیرند که در آن دفع ماده از خلا بیشتر باشد تا دافعه ای در عکس العمل ایجاد شود.
بنابراین تنها یک مورد استثنا وجود دارد و آن سفید چاله ای در مرکز دنیاست.
با این فرض متوجه می شویم نه کرم چاله ای وجود دارد و نه سفید چاله ای به اندازه ی این همه سیاه چاله!

تنها یک و یک سفید چاله در مرکز عالم وجود دارد زیرا در جای دیگر نمی بینیم اجرام به جز این سو به سوی دیگری منبسط شوند.
این مطلب معمای سفید چاله ی استفان هاوکینگ را حل می کند. سالها بود که این دانشمند می گفت پدیده ای باید در مقابل سیاه چاله وجود داشته باشد و اثباتی ریاضی برای آن داشت. اما با این همه تلاش کسی موفق به دیدن این مورد نشد. از آنجا که هاوکینگ سیاه چاله ها را با کرم چاله ها به سفید چاله ها متصل کرده بود منطقی به نظر می رسید که با رصد سیاه چاله ها در نقطه ای که دیگر کرم چاله ای نبود قسمت دوم نظریه ی هاوکینگ را رد می شد.
اما حال می فهمیم که تنها یک سفید چاله در مرکز عالم وجود دارد و به همین دلیل است که ما عاجز از رصد این مورد هستیم.

اما حال چرا کرم چاله از سیاه چاله ها به مرکز دنیا متصل نباشد؟

طبق تعاریف گفته شده اگر جرم در سیاه چاله ساکن نبود چنین گرانشی در اطراف آن ایجاد نمی شد. زیرا گفته بودیم که دافعه ی خلا متناسب با دافعه ی ماده است. (به جز مورد سفید چاله)!
از آنجا که جرم بیشتر متناسب با دافعه ی بیشتر ماده است پس باید جرم در سیاه چاله ساکن باشد.
که البته این رابطه دو طرفه نیست که بگوییم هرچه خلا بیشتر دافعه ی ماده بیشتر زیرا خلا بدون ماده فعال نیست.
حال آیا می توان گفت اگر سیاه چاله ای آنقدر بزرگ شود که بر دافعه ی خلا غلبه کند تبدیل به سفید چاله خواهد شد؟

خیر. اولین دلیل آن است که همچنین موضوعی مشاهده نشده است. دوم اینکه پیش بینی می کنیم یک سیاه چاله در حالت ایده آل که بعید است دافعه ای برابر با خلا داشته باشد و به همین دلیل ثابت بدون هیچ گرانشی در فضا قرار گیرد به این دلیل که هیچ سیاه چاله ای در مرکزیت دفع خلا نیست. آن سفید چاله ای که ما از آن صحبت می کنیم در مرکز دنیا وجود دارد که این خواص برای آن برقرار می شود.
بنابراین خیلی دقیق می توان گفت اگر سیاه چاله به حجم عظیمی از این قابت دست پیدا کنند (تقریبا ۵۰ درصد) گرانش آنها به جای اینکه زیاد شود کاهش خواهد یافت.

اما این دیدگاه چگونه نظریه ی جهان تپنده را توجیه می کند؟

همانطور که خواندید گفتیم سفید چاله ی مرکزی در حال دفع است.
در قوانین ضد ماده داریم که در هنگام ایجاد گرانش ذرات خلا خود متاثر از این برآیند دفع نیستند و ساکن باقی می مانند. همچنین فرض کردیم که ضد مواد خواص مقابل مواد را داشته باشند. پس مواد سفید چاله باید تاثیر پذیر از این دفع خود نیز از مرکز با سرعتی خاص جدا شوند. (با همان سرعت منقبض شدن دنیا).
بنابراین بعد از مدتی (برابر با طول زمان انبساط جهان) مواد داخل سفید چاله طوری تخلیه می شوند که دیگر قادر به مقاومت در مقابل دافعه ی خلا نخواهند بود. به همین دلیل دوباره بعد از انبساط دنیا شروع به انقباض می کند و سفید چاله ی مرکزی به سیاه چاله تبدیل خواهد شد.
(ضد ماده از آن جا خود متاثر از دافعه نیست که این دافعه تولیدی ذرات دیگر خلا هست و گفتیم که خلا بدون ماده تاثیری ندارد).
بنابراین قانون دوم ضدماده را بیان می کنیم: تعریف نیرو برای ضد مواد:

۲) نیرو (از قبیل جاذبه و دافعه) بر ضد مواد تاثیری ندارد.

از این موضوع که بگذریم دیدیم که در تعاریف طبق مثال پاکت آبمیوه و جاروبرقی با ایجاد توده ای از مواد در فضا ذرات خلا در اطراف آن چگال تر شده و از آنجاییکه می خواهند به جای خود برگردند به ماده دافعه وارد می کنند.

بنابر این تعریف داریم: کمیت های وجودی ضد مواد:

۳) ضد مواد حجم اشغال می کنند اما جرم ندارند.

طبق همان مثال ها هم دیدیم که در این فرآیند ذرات خلا جابه جا نمی شوند و با حتی با مواد یا با خود ترکیب نمی شوند. تنها از برخورد نیروهای آنها به یکدیگر یک ذره ی پر انرژی با سرعت بیشتر از C ایجاد می شود. این ذرات تجزیه نمی شوند و یا از بین نمی روند.

بر طبق این موضوع و استناد به قانون پایستگی انرژی ماده قانون چهارم را اینگونه بیان می کنیم: پایستگی ضد مواد:

۴) ضد مواد نه بوجود می آیند و نه از بین می روند.
اما ممکن است عاملی مانند انرژی داشته باشند که به آن تبدیل شوند. (انرژی عامل ماده است. عامل این ذرات باید نوعی مستقل باشند).
این قانون نشان می دهد که در هر جهان مقدار مساوی و ثابتی ضد ماده (خلا) و ماده وجود دارد که این مدل استاندارد را نیز توجیه می کند.

قانون پنجم را استوار بر ای مطلب بیان می کنیم: مقدار نیروی ضد مواد:

۵) نیرویی که خلا به ماده وارد می کند به حجم آن بستگی دارد زیرا آنها جرم ندارند. نیروی وارده از ماده بر خلا نیز به جرم ماده بستگی دارد.

نکته: از آنجا که در مواد حجم بیشتر معنی جرم بیشتر را الزاما نمی دهد پس نیروی مواد را تنها به جرم نسبت می دهیم.
 

mahdi.adelinasab

کاربر بیش فعال
کاربر ممتاز
اادامه----->

اادامه----->

۶) ضد مواد مفهومی به نام چگالی ندارند.
زیرا در هر دنیا تنها این مواد هستند که منبسط و منقبض می شوند و همانطور که گفتیم ذرات خلا ساکن هستند. به همین دلیل چگالی این ذرات تنها در اطراف اجرام تعریف می شوند. جرم بیشتر جسم چگال تر شدن ذرات خلا در اطراف آنرا بیان می کند.
نتایج زیادی از این قانون می توان گرفت که چند نمونه از آنها را در غالب قانون های مجزا بیان می کنیم:

۷) دو ضد ماده بر هم نیرویی وارد نمی کنند زیرا:

الف) تنها در حضور ماده فعال و دارای اثر می گردند.

ب) در پدیده های انبساط و انقباض نیروی ضد مواد (ذرات خلا) تحت تاثیر این فرآیندها قرار نمی گیرد.

۸) ضد مواد هیچ گاه عاملی مانند انرژی ندارند و مطلقا پایسته هستند. زیرا تبدیل آنها به عاملی مانند انرژی آنها را مستلزم به حرکت می کند.

۹) ذره ی ایجاد شده از برخورد دو نیروی دافعه ی خلا و ماده از آنجا که سرعت آن C^۲ کاملا انرژی و در واقع مادی می باشد و از ضد ماده نخواهد بود.

حال تنها مطالب در مورد ضد مواد مربوط به گسیل امواج و بارهای آنها است.
در مورد طیف و گسیل امواج که قبلا اشارتی کرده بودیم مبنی بر اینکه از آنجا که ضد مواد خواص مقابل مواد را دارند نه طیف خواهند داشت و نه موج گسیل خواهند کرد.
البته فرضی را نیز بیان کردیم که ممکن است طیف سیاه برای ضد مواد باشد و این رنگ سیاه همانند سفید برای ماده از چندین رنگ ضد مادی تشکیل شده باشد.

اما در مورد بار:

اگر توجه کرده باشید مدلی که برای انتشار تاکیون ها مشخص کردیم خیلی شبیه به دفع دو بار هم نام بود.
اگر هر دو دفع را منشایی از ذرات با بار همنام و تقریبا مساوی بیان کنیم این شباهت بیشتر نیز مشخص می شود. اما تا به جال باری برای خلا مشخص نشده است.

بنابراین قانون آخر را اینگونه بیان می کنیم:

۱۰) ضد مواد در فرآیند گرانش باری همنام با بار مواد و تقریبا مساوی از نظر مقدار خواهند داشت.
به همین دلیل پیش بینی می کنیم که اولین لایه های خلا بعد از جو دارای بار همنام با آخرین لایه های جو باشد.

اما آیا قطب های مغناطیسی تاثیری در این ذرات و خواص آنها دارند؟

خیر. با تجزیه ی مطالب گفته شده خود در می یابید که تمام خواص بیان شده از فرآیند گرانش و بررسی آن بدست آمده اند و ارتباطی با مغناطیس ندارند.

آنگاه مغناطیس مواد از کجا آمده است؟

VMR-PCR عامل عالم را در دو چیز می داند. خلایی که فضا را پر کرده و ماده ای که ذره ی بنیادین عالم است.
همانطور که می دانیم مغناطیس اجرام سماوی بعد از چندین سال رو به کاهش می رود که دلیل آن نا مشخص است.
نظری که VMR-PCR دارد این است که بعد از بیگ بنگ مواد دارای بالاترین قدرت در میدان مغناطیسی خود هستند. با گذشت زمان و ظاهر شدن سناریوی جهان تپنده آنها این قدرت را به آهستگی از دست می دهند و بعد از انقباض در نقطه ی مرکزی عالم عاملی مغناطیس آنها را دوباره شارژ می کند.
بر همین مبنا پیش بینی می کند که مغناطیس از دست رفته عمدتا تا روز انقباض در فضا پخش خواهد بود و بوسیله ی این عمل در نقطه ی مرکزی جمع خواهد شد تا مواد جمع شده را شارژ مغناطیسی کند.
عمل این انقباض بستگی به دفع خلا خواهد داشت. به صورت تقریبی خلا در شرایط ایده آل به یک جسم متمرکز ۵.۹۸ تنی ۱ تقسیم بر ۱۰^۲۴ نیوتن نیرو وارد می کند. برای بدست آوردن نیروی انقباض می توانید جرم دنیا را در این تناسب قرار داده تا مقدار تقریبی آن را بدست آورید.
بحث تقریبا در اینجا تمام است. زیرا از آنجاییکه چگالی برای ذرات معنی ای ندارد پس در کل ترمودینامیکی ندارند.
به همین دلیل کار خود را با این ۱۰ ویژگی از ضد مواد (ذرات خلا) به پایان می بریم.


VMR-PCR
 

mahdi.adelinasab

کاربر بیش فعال
کاربر ممتاز
هفت شگفتی عظیم در جهان فیزیک

هفت شگفتی عظیم در جهان فیزیک

1)جهان هستی چگونه برپاست؟

ما به جایی رسیدهایم که که بدون حل کردن برخی از مشکلات و مسایل فیزیک، نمیتوانیم در مورد حقایق و پدیدههای جالب و شگفتانگیز دیگر فیزیکی، اطلاعات بیشتری کسب کنیم. برای درک مفاهیمی مثل خاستگاه و بنیاد جهان هستی، سرنوشت نهایی سیاهچالههای فضایی یا امکان سفر در زمان، نیاز داریم که بدانیم جهان هستی چگونه ادامهی حیات میدهد.
هماکنون یک ایدهی خوب در ذهن ما هست که میتواند منتج به کشف حقیقت و بنیاد هستی شود. علم فیزیک در قرن بیستم بر پایهی انقلابهای دوگانهی مکانیک کوانتومی (تئوری ماهیت جسم) و نظریهی معروف اینشتین در مورد فضا، زمان و جاذبه معروف به نسبیت، بنا شده است. اما وقتی شما به دو تعریف نهایی از واقعیت دست پیدا میکنید زمانی که تنها یک واقعیت را موجود میبینید، این راضیکننده نیست.
تلاش برای یگانهسازی این دو تئوری، موانع تکنیکی فنی و مفهومی وحشتناکی را بر سر راه بهترین نظریهپردازان فیزیک در طول دهههای گذشته قرار داده و آنان را به چالش کشیده است. برای مثال از آنجایی که جاذبه، خودش را به عنوان یک عامل ایجاد انحراف در فضای چهاربعدی زمان-مکان معرفی میکند، پذیرش نظریهی کوانتومی در مورد جاذبه ایجاد مشکل میکند. از یک جهت، این به معنای پذیرش شک و تردید هایزنبرگ در مورد فرضیات موجود راجع به زمان مکان به شکل فینفسه است که قطعاً مشکلساز خواهد بود.
اما ممکن است این تردیدها، یک معنای دیگر هم داشته باشند و آن به معنای وجود یک مشکل در رابطه با گرایش و رویکرد ما نسبت به قضیه است. شاید ما نباید مفهوم جاذبه را به تنهایی بررسی کنیم. اکثر تلاشهایی که برای یکسانسازی نظریات موجود در مورد جاذبه انجام شدند، خود منجر به این گشتند که تعریف کیفیت و کمیت جاذبه، وارد یک بحث و میدان جدید شود که به ناچار همهی نیروهای طبیعت مانند همهی اجزای زیراتمی را به یک چارچوب تئوریک محدود میکند. این ایدهیی است که برخی از فیزیکدانها آن را "تئوری همهچیز" میخوانند.
نظریهی جدیدی که در حال حاضر مطرح میشود، نظریهی "فرا-رشتهیی" است که به وجود حلقههای کوچک و ریز رشتهیی اتمی به عنوان سازندهی همهی مواد حکم میدهد. فرضیهی دیگری که وجود دارد و به تئوری ام مشهور است هنوز کمی پیچیده و مبهم به نظر میرسد و میتواند به عنوان لایهیی که در ابعاد وسیعتر فضایی حرکت دارد، تصویر شد. اما مرحله و روند پیشرفت در این نظریهها در بهترین حالت، اینگونه جمعبندی میشود که هیچ کس دقیقاً به یاد نمیآورد وجود حرف "M در نظریهی ام، دقیقاً به چه دلیلی است و چه واژهیی را تداعی میکند. راه درازی در پیش است...

۲) آیا "ضدجاذبه‌"ی اینشتین واقعاً یک اشتباه بود؟

اینشتین، ضدجاذبه را بزرگترین اشتباه خود میشمارد. اما به نظر میرسد که او با اضافه کردن یک نظریهی ضدجاذبه به فرضیهی نسبیت خود که آن را شرط فلسفهی انتظام گیتی میخوانند، کار درستی انجام داده است.
این شرط اضافه در فرضیهی نسبیت، به فضا یک خاصیت تدافعی نسبت میدهد به این معنا که فضا خودش را دفع میکند، گستردهتر میشود و هرچه سریعتر این روند افزایش گستردگی ادامه مییابد. اینشتین این عامل به ظاهر بیارزش را اضافه کرد چرا که تصور میشد جهان هستی ثابت است و بیحرکت. در نتیجه نیاز بود تا نیرویی وجود داشته باشد و قدرت کشش جاذبهیی زمین را بالانس و دچار تعادل کند که مواد موجود بر روی زمین، کوچک و کوچکتر نشوند.
اما در دههی ۱۹۲۰، ادوین هابل کشف کرد که جهان هستی خود به خود در حال گسترش و افزایش است. در نتیجه اینشتین نیز نظریهی "تعادل انتظامی گیتی" را به دلیل ترس، پس گرفت!
اما به نظر میرسد این ایده نباید محو شود. نظریهی کوانتومی میدانها، ثابت میکند که حتی فضاهای خالی نیز با انرژی زیاد در حال طغیان و جنب و جوش هستند. در واقع همان تاثیر جاذبهیی g=10 که نظریهی ضدجاذبهی اینشتین را توصیف میکند. این نظریه در مورد قدرت دافعه(که در مقابل جاذبه مطرح میشود) مقداری گنگ و مبهم است اما به آن یک ارزش تخمینی میدهد.

تقریباً ۱۰ سال پیش، فضانوردان متوجه شدند که سرعت گسترش ابعاد جهان هستی در حال افزایش است و در نتیجه نظریات آزمایش خود در مورد نیروی ضدجاذبه را مطرح کردند. در عین ناباوری و سرگردانی فیزیکدانها هم این فضانوردان، قدرت ضدجاذبه را شامل ۱۲۰ نیرو دانستند که ۱۰ بار از مقدار پیشبینیشدهی قبلی کوچکتر است.
این نتیجه، بسیار گمراهکننده و عجیب است. اگر تعادل برقرار شده میان جاذبه و دافعه، مقداری برابر با صفر بود، در نتیجه یکی از قوانین عمیق و مهم طبیعی در موردش صدق میکرد اما یک عدد غیرصفر که تازه با تئوری ابتدایی نیز غیرقابل مقایسه شناخته شده را نمیشود تعبیر کرد.
برای وخیمتر کردن شرایط، کیهانشناسان به ایدهیی علاقهمند شدند که نیروی دافعهی بسیار قوی و بزرگی در اولین مرحلهی تفکیک پس از انفجار بزرگ یا Big Bang را مطرح میکند چرا که این نظریه، سناریوی جذاب و محبوب مربوط به زمین غیرمسطح و در حال افزایش حجم را تایید میکند. با توجه به این تئوری، جهان هستی پس از تولد و شکلگیری، با سرعتی غیرقابل باور توسط یک عامل قدرتمند و عظیم، تغییر حجم داد و این نیرو را قدرت ضدجاذبه یا دافعه ایجاد نمود.
در نتیجه اگر بخواهیم دلیل و برهانی بر این افزایش حجم سریع و روزافزون بیابیم، به نظریهیی نیاز داریم که توضیح دهد چرا ضدجاذبه در ابتدا بسیار قوی و شدید بود، سپس با شتاب و سرعت کاهش مقدار پیدا کرد و سپس به مقداری در حوالی صفر رسید. به عبارت دیگر، ما میخواهیم بدانیم که چرا نیروی ضدجاذبه، تقریباً در اولین فازهای شکلگیری جهان هستی حذف و محو شد اما به طور کلی از بین نرفت؟
یک احتمال این است که نیرو بر اثر گذشت زمان، محو میشود. احتمال دیگر میتواند این باشد که نیرو در فضا تغییر میکند و در نتیجه ممکن است از ورای دوربین تلسکوپهای ما، همه چیز بسیار بزرگتر از آنچه هستند نشان داده شوند. اگر اینگونه است، در نتیجه هر جسمی در آن منطقه، با سرعت در کهکشانها و ستارههای دیگر پخش و متلاشی میشد و در نتیجه اصلاً هیچ ناظری نمیتوانست حضور داشته باشد تا نیرو را اندازه بگیرد.
آنچه که ما نیاز داریم، یک تئوری است که قدرت نیروی دافعه یا ضدجاذبه را به اندازهی بخشی از قدرت همهی نیروهای موجود در طبیعت برای ما تعریف کند. متاسفانه به نظر نمیرسد که تئوریهای موجود مثل تئوری فرارشتهیی یا تئوری "ام"، این میزان خاص را مشخص کنند و مقدار کمی که باقی میماند هم همچنان ناشناخته و اسرارآمیز خواهد بود. در نتیجه باید دوباره به سوال یک رجوع کنیم!
 

mahdi.adelinasab

کاربر بیش فعال
کاربر ممتاز
هفت شگفتی عظیم در جهان فیزیک

هفت شگفتی عظیم در جهان فیزیک

۳) چرا ما در سه بعد زندگی میکنیم؟

آیا اینکه زمین ما سه بعد دارد، اتفاقی است یا باید برایش دنبال یک تعبیر عمیقتر گشت؟ بعضی از تئوریسینها معتقدند که فضای به وجودآمده بر اثر انفجار بزرگ، تنها به صورت اتفاقی از سه بعد تشکیل گشت و ممکن است قسمتهای دیگری از جهان هستی وجود داشته باشند که ابعادشان متفاوت باشد.
مثلاً هیچ دلیل منطقی نمیتوان یافت برای پاسخ به این سوال که چرا مثلاً جهان هستی فقط دو بعد ندارد. چندصد سال پیش، ادوین آبوت اثری به نام "زمین مسطح" نوشت که در آن جهانی دوبعدی را تصویر کرد. جهانی که در آن اجسام و موجودات حیات خود را تنها بر روی "سطح" ادامه میدادند. اما فیزیک جهان دوبعدی با فیزیک جهان ما بسیار متفاوت خواهد بود. برای مثال در فضای دو بعدی، امواج به شفافیت انتشار در فضای سه بعدی، پخش نمیشوند و باعث ایجاد انواع مشکلات در سیگنالرسانی و انتقال اطلاعات میگردند. و نیز از آنجایی که زندگی آگاهانه، به فرآیند انتقال درست و صحیح اطلاعات بستگی دارد، در نتیجه این تفاوتها کافی خواهند بود برای اینکه مشاهدات ما را تنها در حد مناطقی ناشناخته محدود نگاه دارند.
تصور کردن فراتر از سه بعد نیز مشکلات مختلفی به همراه خواهد داشت. در چنین حالتی، سیستمهای نجومی و سیارهیی غیرممکن میشوند چرا که عکس قانون جاذبه یعنی قانون قدرتهای افزایشی به وجود خواهد آمد. در نتیجه به نظر میرسد که جهان سه بعدی تنها جهانی است که وجود دارد و فیزیکدانها میتوانند دربارهاش بنویسند. اما نکات ریزی وجود دارد که باعث میشود این فرضیه با شک و تردید همراه باشد.
شاید فضا سه بعدی نیست و تنها اینگونه برای ما نشان داده میشود. شاید فضا ۹ یا ۱۰ بعد دارد و حتی ابعاد بیشتر! برخی از تئوریهایی که قصد یکپارچهسازی نیروهای طبیعت را دارند مانند فرضیهی فرا-رشتهیی، امکان وجود تعداد ابعاد بیشتری نسبت به آنچه که ما میبینیم را رد نمیکنند.
دلیلشان نیز این است که بسیاری از معادلاتی که برای توصیف وضعیت موجود به کار میروند، با در نظر گرفتن تعداد بیشتر ابعاد، نتایج بهتری میدهند! در نتیجه نمیتوان آن را کاملاً بیمعنی دانست. ابعاد اضافی فضا، سابقهی حل بسیاری از مشکلات و مسایل حلناشدنی فیزیک را دارند. برای مثال اینشتین برای توصیف کردن جاذبه، به یک بعد اضافی نیاز داشت و آن، زمان بود. و تئودور کالوتزا نیز یک بعد به سه بعد اثبات شده اضافه کرد چرا که میخواست نظریات جاذبه را با فرضیات ماکسول در مورد الکترومغناطیس، همگون سازد.
مطمئناً ما نمیتوانیم بعد چهارم را ببینیم اما این هم احتمالاً یک دلیل دارد. این بعدهای اضافه، میتوانند بسیار کوچک و فشرده شوند. یک لولهی پلیمری آب را از دور در نظر بگیرید. مانند یک خط دراز و معوج به نظر میرسد. از یک بعد نزدیکتر آن را نگاه کنید. به شکل تیوب یا لوله دیده میشود. اما آنچه که در حقیقت این لوله را میسازد، یک سطح دایرهیی شکل کوچک است که دور محیط لوله چرخیده است. به طور مشابه، بعد چهارم نیز میتواند چنین لولهیی باشد که دور فضای سهبعدی میچرخد اما آنقدر کوچک است که دیده نمیشود.
در نتیجه تصور کردن ابعاد بسیار زیادتری که اینگونه در فضا پنهان شدهاند، به راحتی ممکن است. اما متاسفانه نظریهی فرا-رشتهیی هنوز دقیقاً سه بعد گشودهشده را تایید نمیکند در نتیجه برای تصور ما نسبت به جهان هستی هم تعریف درستی نمیتوان ارایه داد.
اما برای تصور کردن یک بعد جدید، راههای دیگری هم هست. فرض کنید نیروهای فیزیکی بتوانند نور و جسم را به یک صفحهی سهبعدی مسطح یا ورقیشکل تقلیل دهند و محدود کنند در حالی که به برخی پدیدههای دیگر فیزیکی اجازه میدهند تا وارد بعد چهارم شوند. ساکن شدن سطوح دو بعدی به جای اجسام سهبعدی در فضاهای مشخص باعث میشود تا هر جسم و پدیدهیی به شکل طرح و نقشهاش نشان داده شود. مثلاً ما یک توپ کرهیی شکل را به صورت دایره ببینیم! به طریق مشابه، ممکن است ادعا شود که ما در حال حاضر تنها تصویری سه بعدی از اجسام و مفاهیمی را میبینیم که در واقع چهاربعدی هستند.
اما فضای "سه لایهیی" ما میتواند تنها در چهار بعد نیز محدود نشود. لایههای قابل کشف دیگری نیز میتوانند وجود داشته باشند که در فضای چهاربعدی حضور دارند. اثبات این فرضیه، انجام آزمایشهایی تازه را میطلبد که وجود بعد چهارم را نیز به ما نشان دهد. اما این نظریه وجود دارد که برخورد لایههای چندبعدی در مقیاسهای اینچنینی میتواند به تکرار شدن "انفجار بزرگ" منجر گردد در نتیجه حضور ما بر روی کرهی زمین شاید اصلاً موید همین مطلب باشد که فضا واقعاً سهبعدی نیست!
۴) آیا سفر در زمان امکانپذیر است؟
شاید سوال یک نیز بازگویی همین سوال باشد. ماهیت جسم و جاذبهی کوانتومی را فراموش کنید. شاید این سوال را هر کسی دوست دارد که پاسخ دهد. سفر در زمان به یک موضوع علمی تخیلی مورد علاقه و جذاب برای مردم تبدیل شد پس از اینکه اچ.جی. ولز، رمان نوگرایانه و جالب خود با نام "ماشین زمان" را نوشت. اما هرآنچه که اینجا مطرح شده، لزوماً علمی تخیلی نیست. برای مثال سفر در زمان به سوی آینده، یک واقعیت علمی پذیرفته شده است. تئوری نسبیت اینشتین تایید میکند که یک جسم ناظر و مشاهدهگر در برابر زمین، میتواند به سمت آیندهی زمین جهش کند. این تاثیر را ساعتهای اتمی ثابت کردهاند.اما اینگونه درگیر شدن با تار و پودهای زمان، به سرعتی مشابه سرعت نور نیاز دارد که شاید در تئوری قابل اثبات و ممکن باشد اما به یک شاهکار بزرگ مهندسی نیاز دارد، حتی اگر به بودجه و هزینههایش فکر نکنیم. اما سفر در زمان به سمت عقب، مشکلات بزرگتری خواهد داشت. نسبیت، این فرضیه را تایید نمیکند که یک جسم ناظر بتواند در دو بعد زمان-مکان سفر کند و به عقب هم برگردد. اما در همهی داستانها و سناریوها، چنین شرایط خارقالعادهیی نیز در نظر گرفته شده است.یکی از راههای سفر به عقب در زمان، استفاده از یک "لانهی مار" فضایی خواهد بود. تئوریسینها معتقدند چنین تونل یا دروازهی ستارهیی که دو نقطه را در ابعاد زمان مکان به یکدیگر متصل کند، وجود دارد. اگر یکیشان را پیدا کنید و داخلش بپرید، چند لحظهی بعد از نقطهیی دیگر در جهان هستی سردر خواهید آورد. آنها معتقدند اگر چنین چالهیی وجود داشته باشد، میتوان آن را با ماشین زمان نیز مطابق و هماهنگ کرد. میتوانید از طریق آن سفر کنید و نه تنها از یک مکان دیگر سر دربیاورید، که وارد یک زمان دیگر نیز بشوید. این "زمان" میتواند در گذشته یا آینده باشد.اگر امکان سفر به گذشته وجود داشته باشد، انواع پارادوکسها و تضادها نیز اتفاق خواهند افتاد. مانند معمای یک مسافر زمان که به سالهای گذشته میرود و مادرش را وقتی یک کودک است، به قتل میرساند. از این تضادها میتوان گریخت اگر اصرار بورزیم و بدانیم که هیچ چیز نمیتواند قانون علت و معلول و کنش و واکنش را از بین ببرد. اما سفری دوطرفه در مسیر زمان، هنوز پیچیده و غیرقابل هضم است.برای بسیاری از فیزیکدانها، این مساله بسیار غیرعقلانی است. استفان هاوکینگز نظریهی "تخمین محافظت از تسلسل وقایع" را مطرح میکند و معتقد است که یک نیرو یا عامل خاص باعث میشود تا اجسام فیزیکی یا نیروها نتوانند به گذشته برگردند. این مساله شاید به دلیل موانع و سدهای فیزیکی اساسی بر سر راه ساخت ماشین زمان اتفاق میافتد. برای مثال انرژی خلاء کوانتومی در صورتی که هیچ محدودیتی برای ورود به حفرههای ماری فضا نداشته باشد، طغیان خواهند کرد و دفع خواهند شد.این مساله همچنان لاینحل باقی مانده اما موضوعی است که بسیاری از مردم، وقت و تلاش خود را صرف آن میکنند. همانطور که هاوکینگز اشاره کرده، صرف هزینه برای تحقیق در مورد سفر به زمان بسیار سخت است. در نتیجه به نظر میرسد برهان یا تکذیبیهیی برای حل این مساله، خود به مشکلات عمومی دیگر منجر شود. مانند طرح یک نظریهی رامشدنی و قابل دسترسی در مورد جاذبهی کوانتومی.
 

mahdi.adelinasab

کاربر بیش فعال
کاربر ممتاز
ادامه----->

ادامه----->

۵) آیا ما در یک صافی کهکشانی زندگی می‌کنیم؟
سیاهچالههای آشنای کهکشانی همچنان میتوانند باعث ایجاد بهت و حیرت برای فیزیکدانهای تئوریست شوند. یک سیاهچالهی فضایی میتواند زمانی که یک ستارهی بزرگ آتش میگیرد و محو میشود، تشکیل گردد. هستهی آن بر اثر جاذبهی درونی فراوان، به دو نیم تقسیم میشود. اگر جسم به لحاظ شکلی، کروی باشد، آنگاه همهی مواد تجزیهشده از ریشه با نسبتهای مساوی به سمت مرکز هندسی هسته، ریزش میکنند در نتیجه مقدار میدان چگالنده و میدان جاذبه به بینهایت میل خواهد کرد. تا زمانی که جاذبه، خود را به عنوان تاروپودی از هندسهی مکان زمان معرفی میکند، میزان خمیدگی و پیچش این دو بعد یعنی زمان و مکان، به بینهایت میل خواهد کرد و برای زمان مکان یا هر دوی آنها، یک خط مرز و محدوده خواهد ساخت. ریاضیدانها، این پدیده را تکین یا فردیت مینامند.
هیچ کس نمیداند که از این فردیتها، چه چیزی حاصل میشود. آیا فضا-زمان، همانجا به پایان خواهد رسید یا این فردیتها به از کارافتادگی نظریات ما منجر میشوند؟ اگر زمان مکان مرز و حدودی داشته باشد، آنگاه پیشبینی کردن حاصل آن نیز غیرممکن خواهد بود. از آنجایی که پیش بینی و فلسفهی جبر و تقدیر، پایهی همهی تصاویر علمی و منطقی از جهان حاضر را تشکیل میدهد، فردیتها میتوانند پا را از مرزهایی فراتر بگذارند که علم نمیتواند.
وقتی یک سیاهچالهی فضایی، حاصل یک تفرد را در بربگیرد، آن دیگر پوشیده و مستور میشود و دیگر تهدیدآمیز نیست. در ۱۹۶۷، راجر پنروز، فرضیهی "سانسور فضایی" را مطرح کرد. در این فرضیه، اعتقاد بر این بود که همهی تفردهای ایجادشده بر اساس کاهش جاذبه، قاعدتاً توسط سیاهچالههای فضایی پوشیده میشوند و در نتیجه برای ما غیرقابل مشاهده هستند. راه چاره نیز غیرقابل دسترسی بود یعنی وجود تفردهای ناپوشیده که میتوانند باعث اتفاقاتی بدون توجیه و دلیل منطقی و عقلانی شوند.
سپس چند سال بعد، استفان هاوکینگز، یک پیچیدگی دیگر در مورد این مساله را نیز مطرح کرد. او متوجه شد که سیاهچالهها، امواج گرمایی از خود منتشر میکنند و به آرامی تجزیه میشوند. تئوریسینهای فیزیکی، آنچه که ممکن بود در پایان اتفاق بیفتد را اینگونه تصور کردند: آیا این تبخیر و تبدیل در نهایت، تفردهای موجود در دل سیاهچالهها را نمایان و بیپرده خواهد کرد؟
این مساله در مباحث مربوط به تئوری اطلاعات نیز به شکلی دیگر مطرح شد. وقتی ستارهیی از یک سیاهچاله برمیخیزد، محتوای اطلاعات جزیی ستاره (مانند تعداد اجزا و ذرههایی که از آن تشکیل شده است و از هر نوع ذره و قسمت، چند تکه عضو در ستاره به کار رفته) برای یک ناظر بیرونی، غیرقابل مشاهده خواهد بود.
در نتیجه زمانی که یک سیاهچالهی فضایی از بین میرود، آیا اطلاعات بر اثر نوعی از تابش که هاوکینگز مطرح کرد، دوباره برمیگردند؟ این سیاهچالهها به نظر میرسد به وضوح در همهجای جهان هستی وجود دارند و حاضر هستند. اگر پیچ و تابهای موجود در حفرههای ماری (حفرههای تکینی) باعث آشکار شدن یک چالهی جدید در بعد فضا زمان میشوند، پس میتوان نتیجه گرفت که جهان هستی مثل یک کفگیر یا صافی فضایی در حال نشست کردن است؟ اگر اینگونه است، پس محتویاتش به کجا میروند؟
۶) جهان هستی از چه چیز ساخته شده است؟

دریغ و افسوس که این سردرگمی همچنان ادامه دارد. فیزیکدانها دقیقاً نمیدانند و مطمئن نیستند که آنجا چه چیزهایی هست. در نجوم اینگونه مطرح میشود که آنچه شما میبینید، دقیقاً آنچه نیست که وجود دارد. ستارهها، سیارهها و تودههای غبار موجود در فضا از اتمهای معمولی تشکیل شدهاند. اما برای هر گرم از اجرام معمولی در جهان هستی، چندین گرم اجرام نادیده و ناشناخته وجود دارد.
ما این را از نوع حرکت ستارهها میدانیم. کهکشان راه شیری بیش از حد تند میچرخد و این برای نیروی جاذبه ایجاد مشکل میکند که همهی اجسام و اجرام قابل مشاهدهی بر روی آن را نگاه دارد. ستارههای اطراف نیز اگر مقدار زیادی از اجرام و اجسام فضایی در اطرافشان در حال کشیده شدن نبودند، حتماً سقوط میکردند. کهکشانهای دیگر نیز همینگونه اند. حجم زیادی از مواد و اجرام نادیده و ناشناس در بین کهکشانها وجود دارند که آنها را به دستههای در حال جنب و جوش و آسیاب کردن تبدیل میکنند.
اگر جهان هستی را یک کل در نظر بگیریم، آنگونه که گسترش پیدا میکند و پسزمینهی کهکشانی در حال ساطع کردن امواج گرمازا (پسفروزشهای در حال محو شدن پس از انفجار بزرگ) یعنی همهی اجزای ظاهری و قابل رویت جهان هستی، به وجود یک اصل فراگیر و نافذ اشاره میکنند، یعنی جهان پنهان هستی.
تئوریهای اینچنینی در مورد ماهیت ماده یا "جرم تاریک" باز هم وجود دارند. از دستههای بزرگ سیاهچالههای فضایی گرفته تا ذرات ریز تجزیه شده بر اثر انفجار بزرگ. اساساً در این مورد، سه ایدهی اصلی وجود دارد. نخستین ایده، نظریهی "انرژی تاریک" است که مانند اجرام محو و پنهان درون فضا به شکل یکسان و یکنواخت پراکنده شدهاند، رفتار میکند. مشاهدات به ما نشان میدهد که این اجرام میتوانند بیش از دو سوم کل مواد جهان هستی را تشکیل دهند. نظریهی دوم، نظریهی "اشیای نورانی فشرده و حجیم" معروف به MACHO است. اشیایی مانند کوتولههای قهوهیی فضایی! فضانوردان، برخی از آنها را کشف کردهاند اما برای تشکیل دادن باقیماندهی جهان هستی، این اشیا بسیار ناچیز هستند.
 

mahdi.adelinasab

کاربر بیش فعال
کاربر ممتاز
ادامه----->

ادامه----->

در نهایت، اجزا و ذرات ریز زیراتمی مانند نوترونها را داریم. این اجرام روان و سیال به سختی با دیگر اجرام و مواد تعامل میکنند و بسیار گنگ و نامعلوم به نظر میرسد که آیا آنها به کرهی زمین هم وارد میشوند یا نه. تعداد بسیار زیادی از آنها وجود دارند که شاید هر گروه یک میلیارد نوترونی از آنها، فقط به اندازهی یک نوترون در برابر تمام مقادیر موجود در گیتی به حساب بیاید اما احتمالاً این ذرات جرم بسیار کمی دارند و بخش کوچک و ناچیزی از مواد و اجرام موجود در جهان را تشکیل میدهند.
تئوریسینها معتقد به وجود نوع دیگری از مادههای پرنفوذ هستند که جرم قابل توجه و فراوانی دارند و به عنوان WIMP یا "ذرات حجیم کمتعامل" شناخته میشوند و آزمایشها برای به دست آوردن و جمعآوری آنها در حال انجام است.
ایدههای عجیب و هیجانانگیز دیگری مانند مواد و اجرام پنهان شده در بعد چهارم یا وجود یک جهان دیگر در سایهی کهکشهانهای شناخته شده نیز مطرح شدهاند. شاید ماهیت جهان تاریک، مرکبی از بسیاری چیزها باشد که بسیاری از آنها هنوز هم ناشناختهاند. آنچه که واضح و مبرهن است اینکه به نظر میرسد اتمهای معمولی و رایجی که ما و کرهی زمین از آنها ساخته شدهایم، تنها بخش کوچکی از کل جرم و مادهی موجود در جهان هستی را شامل میشود که بخش عمدهی آن را ناشناختهها تشکیل میدهند.

۷) این سوالهای من از کجا میآیند؟

هوشمندی و آگاهی انسانها از کجا میآید؟ چرا برخی الگوها و صفحات سلولی الکتریکی مانند صفحات سلولی در مغز، دارای احساس و اندیشه هستند در حالی که برخی دیگر از این صفحات مانند سلولهای سراسری در دستگاه گوارش یا دستگاه تنفسی احتمالاً چنین احساساتی را ندارند؟ یا از سوی دیگر، چگونه میشود که مفاهیم انتزاعی و غیرجسمانی مانند تفکرات یا آرزوها میتوانند الکترونها و یونها را به سمت مغز حرکت دهند و دستگاه حرکت فیزیکی بدن را تحریک نمایند؟
یا آیا این سوالات فقط مغلطهی بیمعنا و بیمورد مفاهیم هستند؟ آیا فیزیکدانها این سوالات را به راحتی پاسخ میدهند؟ عدهیی فکر میکنند که این سوالها برای فیزیکدانها، به آسانی پاسخ داده میشوند. ارتباط دادن جهان مادی و جهان معنوی، چیزی است که اکثر فیزیکدانها از آن اجتناب و دوری میکنند. اما اگر فیزیک مدعی باشد که یک علم جهانشمول و عمومی است، میتوان نتیجهگیری کرد که آگاهی و معرفت علمی، تعریفی عام و تلفیقی از هر دوی این مفاهیم است.
مکانیک کوانتومی به عنوان یک کلید در این زمینه شناخته شده است. بیشتر به این دلیل که ناظر بیرونی، نقشی اساسی در تعریف و تعبیر سیستمهای کوانتومی بازی میکند. اما هنوز راه زیادی مانده تا این موضوع روشن شود که تاثیرات کوانتومی میتواند به کل دستگاه و مجموعهی نورونها و سلولهای عصبی برسد یا نه.
شاید کلید رسیدن به پاسخ، رجوع کردن به تعریف زندگی است. هیچ کس نمیداند که دقیقاً چگونه، کجا و چه زمانی، حیات شروع شد. شاید تلفیقی از مواد شیمیایی بیجان، در ابتدا منجر به تشکیل شدن بدن یک موجود زنده شد. به نظر نمیرسد که این اتفاق به شکل آنی و لحظهیی و در یک مرحله افتاده باشد و بیهیچ گفتوگویی، میتوان ادعا کرد که یک فرآیند فیزیکی پیچیده و طولانی طی شده اما هنوز مشخص نیست که این سیر تکامل حیات، از مشکلات و مسایلی است که باید در حوزهی فیزیک بررسی شود یا نه.
گاهی اوقات ادعا میشود که زندگی بر پایهی قانونهای فیزیکی نوشته شده است. البته این مساله درست است که اگر این قوانین اندکی متفاوت بودند، زندگی به طور کلی دگرگون میشد اما هیچ چیزی در این قانونهای شناخته شده وجود ندارد که جسم یا مفهومی را به ساماندهی در زندگی مجبور کند. اگر قانون حیات نیز در طبیعت وجود داشته باشد، نمیتوان در لابهلای قانونهای فیزیکی آن را یافت که خاستگاهش، نظریاتی چون تئوری اطلاعات و... است. علاوه بر اینها، یک سلول زنده، نوعی از مادهی ناشناخته و جادویی نیست که یک سیستم و نظام بسیار پیچیدهی پردازش و تکرار اطلاعات است.
قوانین حاکم بر تئوری اطلاعات یا تئوری پیچیدگی، همچنان مورد استفاده هستند. در سطح مشابه و از سوی دیگر، همانطور که اروین شرودینگر در دههی ۱۹۲۰ ادعا کرده بود، مکانیک کوانتومی نیز نقش مهمی در تاریخچهی حیات بازی میکند.
هرچند که قوانین مربوط به پردازش کوانتومی اطلاعات، به شکل قابل ملاحظهیی با سیستمهای کلاسیک بیولوژیک تفاوت دارند اما میتوانند کلیدی برای حل این مشکلات و پاسخ به این سوالها باشند.
 

mahdi.adelinasab

کاربر بیش فعال
کاربر ممتاز
هندسه فركتالها

هندسه فركتالها

دراین مقاله می كوشیم تا نقش ریاضیات را از رهگذر مفاهیم فیزیك جدید، در دنیای زیبا و چندنظمی نانو نشان دهیم. اغلب اشیاء در جهان -از كوچكترین تا بزرگترین- از مجموعه از المانها تشكیل شده است كه هر یك دارای درجهای از آزادی هستند. قوانین پایهای فیزیك این ویژگیها را توضیح میدهند. اكنون فرض كنید كه میخواهید معادلهٔ نیوتن یا شرودینگر را برای ۱۰۲۳ اتم حل كنید؟ و فرض كنید كه قویترین رایانه ها را نیز در اختیار دارید، آیا این امر مقدور است؟ از دیدگاه اتمی پاسخ این سؤال به نظر منفی میرسد. حل مسأله با در نظر گرفته ۱۰۲۳ اتم زمان زیادی میگیرد و نتایج برای تفسیر كاملاً پیچیده میشود (هیچ فضای دیسك سختی قادر به ذخیرهسازی موقعیت ۱۰۲۳ اتم نمیباشد) علاوه بر این، برای هر ماده، هر تركیب شیمیایی و ساختار شبكهای مجبور به بارها و بارها محاسبه هستیم. علاوه بر این با زمینههای منحصر به فردی از رفتار مواد در فازهای انتقالی جامد، مایع، گاز، پلاسما، فرومغناطیس و ضدفرومغناطیس، ابررسانائی، ابر سیالی و .... مواجهیم. خواص مكانیكی ماده در هر فاز، از فازی به فازی دیگر، متفاوت است. زیرا اتمها دارای درجه آزادی هستند و بعلاوه، پارامترهایی نظیر دما، فشار، نیروی خارجی از فازی به فاز دیگر به شدت تغییر میكند. اما سؤال اساسی اینجاست كه چگونه رفتار آنها در گذر فاز میتوان ارتباط داد؟ اگر رفتار مواد را تحت شرایط آزمایشگاهی، در گسترهٔ وسیعی از حالات بررسی كنیم، پارامترهای متعددی را در خواهیم یافت كه قادرند شكل مسأله را عوض كنند. اما از سوی دیگر توانائی محاسباتی ما محدود است، بنابراین تقریب مقدور است اما پیشگوئی در چنین مواردی محدود است. اما از سوی دیگر فیزیكدانان همواره به سوی تئوریهای جهان شمول توجه دارند. رغبت در جهت پیشگوئی رفتار جهان شمول ماده، فیزیكدانان را به سوی "تئوری پدیدههای بحرانی" سوق داد. "مؤلفههای بحرانی" در یك كلاس جهانی مدلسازی قرار دارند. این مؤلفهها نمایشگر مدلی جهان شمول از رفتار ماده هستند و رفتار ماده را به تقارن ماده ( در دیدگاه ساختاری) و ابعاد فضای ماده مرتبط میكند. این مقادیر بحرانی، با دقت مناسب بوسیله تئوری قابل محاسبهاند. سیستمهای بحرانی در" جهان فركتال" قرار دارند.

ارزش مؤلفههای بحرانی در چیست؟
تئوریهای مبتنی بر آنالیز ابعادی، مقادیر نسبی برای این مؤلفهها پیشگوئی میكنند. برای آنكه پیچیدگی مسأله را درك كنیم، یك تصویر لحظهای از "اسپین" را در یك ماده "فرومغناطیس" مجسم كنید. اكنون به شكل "۲" دقت كنید. شكل "۲" نمایشگر نتایج یك شبیه سازی برای یك Ising فرو مغناطیس است. بطوریكه، اسپینها میتوانند دو حالت "بالا" (نمایش داده شده با رنگ مشكی) یا "پایین" باشد. در حالت "فرومغناطیس"، (دما كمتر از دمای بحرانی)، اغلب "اسپینها" در حالت "بالا" قرار میگیرند (شكل سمت چپ)، در حالیكه در حالت" پارامغناطیس" (دما بالاتر از دمای بحرانی)، اسپینها جهتگیری تصادفی میكنند (شكل سمت راست، رنگ خاكستری). در اینجا تنها خوشههای كوچكی از اسپینهای هم تراز، از اندازهٔ سیستم، كوچكترند در حالیكه، در موقعیت بحرانی (شكل وسط)، كه دما به حد بحرانی رسیده است، خوشههای نامحدودی از اسپینهای حالت "بالا" پدیدار شدهاند (سیستم در مرز "نظم" قر ار گرفته است). توجه كنید كه خوشهٔ نظم یافته شكل "فركتال"، با نوسان شكلی در همهٔ مقیاس ها، به خودگرفته است. این هندسهٔ فركتالی از خوشههای تشكیل یافته، به طرز عجیبی انعكاس مییابند: مقادیری غیرمنطقی از مؤلفههای بحرانی! و البته تئوریهای ساده ساز، مشخصات این فركتالها را نمیتوانند تعیین كننند. از دیدگاه فیزیكی، نوسانات شكلی در همهٔ مقیاسها، متضمن ناپایداری سیستم در موقعیت بحرانی است.

اما آیا میتوانیم امیدوار به درك این رفتار پیچیده باشیم؟ مكانیك كلاسیك یا كوانتوم؟
زمانی كه به دنیای كوانتوم وارد میشویم میگوییم:
"قوانین كوانتوم، رفتار پایهای همهٔ ذرات بنیادی را توجیه و تفسیر میكند". تاكنون هیچ كس دلیلی بر نادرستی این قانون ارایه نكرده است. امروزه، فازهای انتقالی بوسیله " نوسانات دمائی" تفسیر میشود. در چنین مواردی، رفتار بحرانی بوسیلهٔ مدلهای كاملاً خالص مكانیك كلاسیك توجیه میشود. این ایده بزرگی است، زیرا تئوریهای كلاسیك از تئوریهای كوانتوم سادهتر است. در سایر موارد، رفتار ماده در فاز انتقالی در دمای صفر مطلق، بوسیلهٔ میزان سازی آزمایشگاهی "نوسانات كوانتومی" توجیه و اثبات میشود برای این انتقال فازهای كوانتومی،"مدلهای كلاسیك" كمتر مورد استفاده قرار میگیرد.

سؤالات اساسی در مدلسازی سیستمهای نانویی:

مؤلفههای بحرانی بصورت آزمایشگاهی چگونه تعیین میشوند؟ چه مؤلفههایی جهانی هستند و كدامیك نیستند؟ مرجع جهان شمول بودن مؤلفههای بحرانی كدام است؟

انتقال فاز اصلاح شده در سیستمهای محدود (سازههای نانوئی) چگونه است؟

رفتار بحرانی چگونه محاسبه میشود؟ آیا میتوانیم "هندسهٔ فركتال" مؤلفههای بحرانی را درك كنیم؟

ارتباط میان مؤلفههای بحرانی، تقارن داخلی سیستم و ابعاد مسأله، چیست؟ ارتباط میان سؤالات فوق، برای هر مسأله، چهارچوبی در جهت مطالعهٔ رفتار سازههای نانوئی بوجود میآورد.


منابع:

*** http://dynamo.ecn.purdue.edu/photspec/spectroscopy.htm
Jensen R V 1991 Chaos 1101
***
*** Bird J P, Olatona D M, Newbury R, Taylor R P, Ishibashi K, Stopa M, Aoyagi Y, Sugano T and Ochiai Y 1995 Phys, Rev . B 52 R14 336
Baranger HU, Jalabert RA and Stone A D 1990 Phys, Rev. Lett. 70 3876
***(Mandelbrot B 1982 The Fractal Geometry of Nature ( San Francisco, CA: Freeman***
*** Hegger H, Hecker K, Reckziegel G, Freimuth A, Huckestein B, Janssen M and Tuzinski R

Ketzmerick R 1996 Phys, Rev. B 54 10 841
***
Jalabert R A, Baranser H U and Stone A D 1990 Phys, Rev. Lett. 65 2442
***
Chang A M, Baranger H U, Pfeiffer L N and West K N 1994 Phys. Rev. Lett. 73 2111
***
*** Marcus C M, Rimberg A J, Westervelt R M, Hopkins P F and Gossard A C. Phys.
۶۹ ۵۰۶ Rev ۱۹۹۲. Lett
*** BeenakkerCWJandVanHouten H 1991 Quantum transport in semiconductor
nanostructures Solid State Physics vol 44 (New York: Academic) p 1
 
بالا