آلیاژهای حافظه دار

behzadk2019

کاربر فعال تالار مهندسی مکانیک
کاربر ممتاز
موادي که باعث سازگاري سازه با محيط خود مي شوند، مواد محرک ناميده مي شوند. اين مواد مي توانند شکل، سفتي، مکان، فرکانس طبيعي و ساير مشخصات مکانيکي را در پاسخ به دما و يا ميدان هاي الکترومغناطيسي تغيير دهند. امروزه پنج نوع ماده محرک به طور عمده استفاده مي شود که شامل آلياژهاي حافظه دار، سراميکهاي پيزوالکتريک2، مواد مغناطيسي سخت3 و مايعات الکترورئولوژکال4 و مگنتورئولوژيکال5 مي باشند. اين مواد از زمره مواد هوشمند محرک مي باشند. مواد هوشمند آن دسته از موادي هستند که مي توانند به تغييرات محيط به بهترين شکل ممکن پاسخ داده و رفتار خود را نسبت به تغييرات تنظيم نمايند.

2-معرفي آلياژهاي حافظه دار
آلياژهاي حافظه دار عنوان گروهي از مواد محرک مي باشند که خواص متمايز و برتري نسبت به ساير آلياژها دارند. عکس العمل شديد اين مواد نسبت به برخي از پارامترهاي ترموديناميکي و مکانيکي و قابليت بازگشت به شکل اوليه در اثر اعمال پارامترهاي مذکور به گونه اي است که مي تواند رفتار سيستم را بهبود بخشد. وقتي يک آلياژ معمولي تحت بار خارجي بيش از حد الاستيک قرار مي گيرد؛ تغيير شکل مي دهد. اين نوع تغيير شکل بعد از حذف بار باقي مي ماند. اما آلياژهاي حافظه دار، منجمله آلياژهاي Ni-Ti، Cu-Zn، Cu-Zn-Al، Cu-Zn-Ga، Cu-Zn-Sn، Cu-Zn-Si، Cu-Al-Ni، Cu-Au-Zn، Cu-Sn، Au-Cd، Ni-Al، Fe-Pt و... رفتار متفاوتي از خود ارائه مي نمايند. در دماي پايين، يک نمونه حافظه دار مي تواند تغيير شکل پلاستيک چند درصدي را تحمل کند و سپس به صورت کامل به شکل اوليه خود در دماي بالا برگردد. در فرآيند برگشت به شکل اوليه، آلياژ مي تواند نيروي زيادي توليد کند که اين نيرو براي تحريک مفيد مي باشد. اين فرآيند اولين بار در سال 1938 مشاهده شد و براي مدت زمان طولاني در حد کنجکاوي آزمايشگاهي باقي ماند. در سال 1961 اثر حافظه داري شکل در آلياژ نيکل- تيتانيوم با درصد اتمي مساوي (50-50%) توسط بوهلر و در آزمايشگاه ناوال اوردنانس (Naval Ordanance Lab) کشف و تحت نام نيتينول (Nitinol) مشهور شد. دو حرف اول نيتينول در ارتباط با نيکل، دو حرف بعدي مربوط به عنصر تيتانيوم و سه حرف آخر در رابطه با آزمايشگاه ناول اوردانس مي باشد. از اوايل سال 1980 استفاده از آلياژهاي حافظه دار در بين محققان و مهندسان مورد توجه قرار گرفت و اين آلياژ هوشمند در زمينه هاي وسيعي از جمله تعديل رفتار آئروالاستيسيته آنتن ماهواره ها، کنترل ارتعاش سازه هاي فضايي، کنترل ارتعاش سطوح کنترلي هواپيماها و حتي در شبيه سازي هاي پزشکي مورد استفاده قرار گرفته است و کشف مزاياي اصلي و علمي آن هر روز افزايش يافته است.
مکانيزم اصلي که خواص آلياژهاي حافظه دار را کنترل مي کند در رابطه با تغيير کريستالي آلياژ است. به اين معني که ساختار مارتنزيتي در دماي پايين با افزايش دما به ساختار آستنيتي تبديل مي شود و در هنگام سرد کردن؛ فرآيند عکس رخ خواهد داد. بسياري از مواد، استحاله مارتنزيتي دارند اما برتري که آلياژهاي حافظه دار را نسبت به آلياژهاي ديگر متمايز مي نمايد قابليت دو قلو شدن اين آلياژ در فاز مارتنزيت مي باشد. در حاليکه مواد ديگر به وسيله لغزش و حرکت نابجائيها تغيير شکل مي يابند، آلياژهاي حافظه دار به وسيله تغيير جهت ساده ساختار کريستالهاي خود و از طريق مرزهاي دو قلوئي به تنشهاي اعمال شده، عکس العمل نشان مي دهند. اگر در اين آلياژها در دماي پائين، هنگاميکه فاز مارتنزيت حاکم است، تغيير‌فرم پلاستيکي روي ‌دهد، ساختار کريستالي دو قلو شده اي براي آلياژ ايجاد مي شود که ناشي از تغيير فرم پلاستيک مي باشد. با گرم‌کردن آلياژ تغيير فرم يافته تا دماي شروع فاز آستنيت مي‌توان شکل اوليه را بازگرداند. اين توانائي بعنوان اثر حافظه- شکل خوانده مي‌شود و حاصل از تغيير فاز مارتنزيت در دماي پائين به فاز آستنيت در دماي بالا مي‌باشد. در شکل 1-3 اين قابليت بصورت شماتيک نشان داده شده است. همانگونه که در شکل ملاحظه مي گردد، در اثر خم کردن ميله حافظه دار در دماي پايين و جايي که فاز مارتنزيت حاکم است، تغيي فرم پلاستيک در ميله رخ داده و طول آن زياد مي شود. حال اگر ميله خم شده، گرم شود و فاز آستنيت حاکم گردد، ميله به بهينه ترين حالت به شکل اوليه خود بر مي گردد. وقتي هم که ميله سرد شود و به فاز مارتنزيت برگردد، نيز کرنشهاي پلاستيک کاملا حذف شده اند و به حالت اوليه درخواهد آمد. در حقيقت در اثر فرآيند برگشت به شکل اوليه، تنشهايي در آلياژ توليد ميشود که اين تنش باعث تحريک ميشود. اين تنشهاي حاصل شده، تنش بازيافتي خوانده مي شود و بهبود توزيع تنش و کرنش، بهبود خواصي چون مدول يانگ و تنش تسليم و توانائي کنترل رفتار سيستم، از جمله آثار مفيد تنشهاي بازيافتي مي‌باشد. بعنوان مثال اگر در نوعي از اين آلياژ کرنش 8 درصدي رخ دهد، با گرم کردن مي توان اين کرنش را کاملا از بين برد.


شکل1-3) اثر حافظه- شکل آلياژهاي حافظه دار

رفتار ترموديناميکي آلياژهاي حافظه دار به دما، تنش و ترکيب شيميايي و ساختار آلياژ بستگي دارد. در فرآيند گرم کردن آلياژ و در دماي پايين تر از دماي آغاز فاز آستنيت ماده 100% در فاز مارتنزيت مي باشد و در دماي پايان فاز آستنيت ماده 100% در فاز آستنيت مي باشد. و در فرآيند سرد کردن و در دماي بالاتر از دماي آغاز فاز مارتنزيت ماده 100% در فاز آستنيت مي باشد در حاليکه در دماي پايين تر از دماي پايان فاز مارتنزيت ماده کاملا در فاز مارتنزيت مي باشد. اما در دماي مابين و و همچنين مابين دماهاي و ماده بصورت دو فازي است و بخشي از آن در فاز مارتنزيت و بخشي از آن در فاز آستنيت مي باشد. حالت ماده در دماهاي مختلف توسط درصد حجمي فاز مارتنزيت بيان مي شود که در دماي پايينتر از در فرآيند گرم کردن و دماي پايين تر از در فرآيند سرد کردن برابر مقدار 1 مي باشد و در دماي بالاتر از در فرآيند گرم کردن و بالاتر از در فرآيند سردکردن برابر مقدار صفر مي باشد. اما در دماي مابين دماهاي تغيير فاز بسته به نوع فرآيند سرد و گرم کردن به دما وابسته مي باشد در شکل 2-3 چگونگي اين ارتباط بر حسب دما نشان داده شده است.
در دماي پايين و به ازاي مدول الاستيسيته آلياژ برابر با مدول فاز مارتنزيت و در دماي بالا و به ازاي مدول الاستيسيته آلياژ برابر به مدول فاز آستنيت مي باشد. اما در دماي مابين دماهاي تغيير فاز، تغييرات مدول الاستيسيته تابعي بر حسب دما و بصورت شکل 3-3 مي باشد. همچنين تنشهاي بازيافتي توليد شده نيز به دما وابستگي دارد که اين ارتباط در شکل 4-3 آورده شده است. بايستي توجه شود که تنشهاي بازيافتي به مقدار کرنش اوليه بستگي داشته و در حالتي که آلياژ تحت هيچگونه کرنش اوليه اي نباشد، در اثر تغيير فاز، تنش بازيافتي توليد نمي شود. آلیاژهای حافظه دار : جزء گروهی از آلیاژهای فلزی هستند كه این توانایی را دارند كه اگر آنها را تا بالای دمای ویژه ای گرم كنیم ؛ قادر به بازیابی شكل اولیه خود خواهند بود.
علوم و تكنولوژی در قرن آینده به طور قطع تاثیر زیادی از مواد جدید خواهد گرفت . آلیاژ های حافظه دار یكی از این مواد نو هستند . اولین مشاهده ثبت شده در مورد پدیده حافظه داری در سال 1932 مشاهده شد ، اما تا سال 1960 هیچ تحقیق جدی در این زمینه انجام نشد . در سال 1962 در آزمایشگاه نیروی دریایی ایالات متحده آمریكا در حین عملیات حرارتی یك میله از جنس Ni.Ti پدیده حافظه داری در این آلیاژها كشف شد .
آلیاژهای حافظه دار ، آلیاژهایی هستند كه دو مشخصه بی همتا از خود نشان می دهند :
1- Shape Memory Effect ( رفتار حافظه ای )
2- Pseudoelastic Behavior ( رفتار شبه الاستیك )
ویژگی های دیگر این آلیاژها عبارت است از : مقاومت به خوردگی بالا ، مقاومت ویژه الكتریكی نسبتا بالا، خواص مكانیكی نسبتا خوب ، خستگی طولانی ، شكل پذیری بالا و قابلیت انطباق با بدن . مهمترین كاربرد این آلیاژها در صنایع هوا فضا و صنایع پزشكی است.
این آلیاژها در بیشتر موارد شامل Ni-Ti ، Cu-Zn-Al ، Cu -Al-Ni هستند كه در این مقاله آلیاژ Ni-Ti مورد بحث است . كه این آلیاژ با نامهای Ti-Ni ، Tee-Nee ، Nitinol معروف است . این آلیاژها در فارسی نیز با نام های آلیاژ حافظه دار ، آلیاژ خود شكل و آلیاژ با حافظه شكلی ترجمه شده است . آلیاژهای حافظه دار به اختصار SMA هم خوانده می شوند.
كاربرد های آلیاژهای حافظه دار :
1- كاربرد با بازیابی آزاد ( استفاده از حركت ) : آلیاژهای حافظه دار در حین سرد و گرم شدن شكل اولیه خود را بازیابی می كنند . بدون اینكه تنش بیرونی از این كار ممانعت به عمل آورد . مثل آنتن های سفینه فضایی
2- كاربرد با بازیابی مقید ( استفاده از نیرو ) : به كاربردهایی اطلاق می شود كه در آنها یك نیروی خارجی جلوی بازیابی كرنش در آلیاژ را می گیرد . در این حالت هیچ كرنشی بازیابی نمی شود . ولی مقدار زیادی تنش ایجاد می شود . مثل چفت و بست ها
3- كاربردهایی با بازیابی تحت فشار ( استفاده از كار ) : هم تنش و هم كرنش حین گرم شدن بازیابی می شوند و كار مكانیكی ایجاد می شود
4- كاربردهای ابر كشسانی ( ذخیره انرژی مكانیكی ) : رفتار الاستیك 15 برابر فولادهای فنر است
5- خاصیت میرا كنندگی ارتعاشات : مهار ارتعاشات در سازه هایی كه تحت ارتعاشات شدید هستند . مثل صفحات آزاد میرا كننده ارتعاشات در سفینه های فضایی
ساختار آلیاژهای حافظه دار
خاصیت حافظه داری در این آلیاژها به وسیله تغیر موقعیت فاز جامد است . كه در آن چیدمان مجدد مولكولی رخ می دهد . آلیاژهای حافظه دار دارای دو فاز ثابت هستند . فاز در دمای بالا كه آستنیت ( Austenite ) نامیده می شود . كه ساختمان آن مكعبی بوده و به علت دارا بودن تقارن بالا محكم تر است . فاز با دمای پایین كه مارتنزیت ( Martensite ) نامیده می شود ؛ كه می تواند به حالت دوقلویی و غیر دوقلویی موجود باشد . شكل آن منوكلینیك بوده و نسبت به آستنیت تقارن كمتری دارد . فاز مارتنزیت از نوع فاز ترموالاستیك بوده كه دو خصوصیت لغزنده بودن و انرژی كم فصل مشترك را دارا است . كه با تغییر كوچك دما و تنش تغییر می كند. بمحض سرد كردن آلیاژ در نبود بارگذاری تغییر فاز از آستنیت به مارتنزیت صورت می پذیرد كه نتیجه این تغییر فاز قابل مشاهده ماكروسكپیك نیست . بمحض گرم كردن ماده در فاز مارتنزیت ، برگشت فاز اتفاق می افتد . در نمودار تغییر فاز چهار نقطه اختصاصی مشخص شده است ؛ دمای آغاز مارتنزیت (M[SUP]0s[/SUP]) كه در آن دما بسته های مارتنزیت شروع به بزرگ شدن می كنند. دمای پایان مارتنزیت (M[SUP]0f[/SUP]) كه در این دما تغییر فاز از آستنیت به مارتنزیت به طور كامل صورت گرفته است و ما مارتنزیت داریم. دمای شروع آستنیت (A[SUP]os[/SUP]) كه دمای شروع تغییر فاز از آستنیت به مارتنزیت است ؛ و دمای پایان آستنیت (A[SUP]of[/SUP]) كه در آن تغییر فاز مارتنزیت به آستنیت كامل شده است.

Temperature-induced phase transformation of an SMA without mechanical loading.‏
اگر بارگذاری مكانیكی روی آلیاژ در فاز مارتنزیت دوقلویی انجام شود ، مارتنزیت از حالت دوقلویی خارج شده و تغییر شكل می دهد . به محض برداشتن بار ، مارتنزیت به همان حالت باقی می ماند . با گرم كردن آلیاژ بالا تر از دمای (A[SUP]of[/SUP]) فاز مارتنزیت به آستنیت تغییر می یابد . در نتیجه این تغییر فاز ، آلیاژ شكل اولیه خود را باز می یابد . آنچه در اینجا شرح داده شد به عنوان Shape Memory Effect شناخته می شود . اگر بارگذاری در فاز آستنیت انجام شود و ماده سرد شود ، تغییر فاز آستنیت به مارتنزیت دوقلویی نشده مشاهده می شود . كه نتیجه آن یك كرنش ( در حدود 5-8 % ) است . ولی با گرمای مجدد و تغییر فاز معكوس ، آلیاژ به شكل قبلی خود باز می گردد . چهار نقطه اختصاصی كه در نمودار تغییر فاز - دما موجود هستند به عنوان دمای انتقال شناخته می شوند . این نقاط وابسته به شدت بارگذاری بوده و یك رابطه خطی بین دمای انتقال و شدت بارگذاری موجود است .

Shape Memory Effect of an SMA.‎


ما همچنین می توانیم تغییر فاز در آلیاژ را فقط با بارگذاری مكانیكی ایجاد كنیم كه نتیجه این عمل مارتنزیت دوقلویی نشده به همراه مقدار زیادی كرنش است . حال اگر دمای آلیژ بالای (A[SUP]of[/SUP]) باشد ؛ به محض عدم بارگذاری ، آلیاژ به شكل اول خود باز می گردد. بنابر این رفتار ماده به نوعی الاستیك خواهد بود . از این خاصیت به عنوان Pseudoelastic Behavior نام برده می شود .

Pseudoelastic loading path. ‎
PROPERTIES OF NITINOL
Density
6.45 gm/cm[SUP]3[/SUP]
Thermal Conductivity
10 W/m[SUP]o[/SUP]K
Specific Heat
322 j/kg[SUP]o[/SUP]K
Latent Heat
24,200 J/kg
Ultimate Tensile Strength
750-960 MPa
Elongation to Failure
15.5%
Yield Strength (Austenite)
560 MPa
Young's Modulus (Austenite)
75 GPa
Yield Strength (Martensite)
100 MPa
Young's Modulus (Martensite)
28 GPa
 
Similar threads
بالا